Contents

Part I Fundamentals

1 Single Point Diamond Turning Technology 3
 References .. 6

2 Factors Influencing Machined Surface Quality 7
 2.1 Machine Tools .. 7
 2.2 Vibration in Machining 8
 2.3 Cutting Conditions ... 9
 2.4 Single Point Diamond Tools 11
 2.5 Environmental Conditions 12
 2.6 Workpiece Materials .. 13
 2.7 Deformation Behaviour of Materials in Machining 15
 References .. 17

3 Modelling and Simulation for Ultra-Precision Machining 21
 3.1 Analytical and Numerical Methods for Machining Process
 Modelling .. 21
 3.1.1 Slip-Line Field Modelling of Machining 21
 3.1.2 Molecular Dynamics Simulation of Machining 22
 3.1.3 Quasicontinuum (QC) Method 23
 3.1.4 Meshfree Method 24
 3.1.5 Discrete Element Method 26
 3.1.6 Finite Element Method 27
 3.2 Models of Chip Formation and Shear Bands Theory 29
 3.2.1 The Chip Formation Process and Models
 in Metal Cutting .. 29
 3.2.2 Shear Band Formation and Chip Morphology 32
 3.2.3 The Shear Angle Relationship 34
 References .. 35
Part II Materials Characterisation in Ultra-Precision Diamond Turning

4 Machinability of Single Crystals in Diamond Turning 43
 4.1 Key Aspects in Diamond Turning of Single Crystals 43
 4.1.1 The Ultra-Precision Machine 43
 4.1.2 Diamond Tools ... 43
 4.1.3 Measurement of Surface Roughness 46
 4.1.4 Measurement of Cutting Force 50
 4.1.5 Work Materials and Cutting Conditions 50
 4.2 Effect of Crystallography on Surface Roughness 52
 4.2.1 Surface Features with Crystallographic Orientation 52
 4.2.2 Surface Roughness Profiles Along Radial Sections 56
 4.2.3 Degree of Roughness Anisotropy (DRA) 57
 4.3 Variation of Cutting Force 59
 4.3.1 Effect of Feed Rate on the Cutting Force 59
 4.3.2 Effect of Depth of Cut on the Cutting Force 60
 4.4 Observation on Chip Formation 61
References ... 68

5 Materials Deformation Behaviour and Characterisation 71
 5.1 Techniques for Materials Characterisation 71
 5.1.1 X-ray Diffraction 71
 5.1.2 Nano-indentation Measurements 73
 5.1.3 Nano-scratch Testing 76
 5.1.4 Transmission Electron Microscopy (TEM) 77
 5.2 Characterisation of the Diamond-Turned Surface Layer 79
 5.2.1 X-ray Diffraction Line Profile Analysis 79
 5.2.2 Microhardness and Elastic Modulus of Machined Surface .. 79
 5.2.3 Friction Coefficient 81
 5.2.4 Dislocation Density and Structure of Diamond-Turned Surface Layers 82
 5.3 Influences of Material Swelling upon Surface Roughness 89
 5.3.1 Materials Swelling Effect 89
 5.3.2 Characterisation Techniques 95
 5.3.3 Formation of Surface Roughness in Machining 101
References ... 103

6 Material Electropulsing Treatment and Characterisation of Machinability ... 105
 6.1 Basics of Electropulsing Treatment 106
 6.1.1 Development of Electropulsing Treatment 106
 6.1.2 Theory of Electropulsing Treatment 106
6.2 Effect of Electropulsing Treatment
on Microstructural Changes 112
 6.2.1 Technical Aspects of Electropulsing Treatment .. 112
 6.2.2 Phase Transformation and Microstructural Changes . 116
 6.2.3 Dislocation Identity 127
 6.2.4 Driving Forces for Phase Transformations 129
 6.2.5 Electropulsing Kinetics 130
6.3 Machinability Enhancement by Electropulsing Treatment .. 131
References ... 144

7 Microplasticity Analysis for Materials Characterisation 147
 7.1 Shear Angle and Micro-Cutting Force Prediction 147
 7.1.1 Microplasticity Model for Shear Angle Prediction 147
 7.1.2 Texture Softening Factor 151
 7.1.3 Criterion for Shear Angle Prediction 154
 7.1.4 Prediction of Micro-Cutting Forces Variation 156
 7.2 Variation in Shear Angle and Cutting Force 159
 7.2.1 Shear Angle Predictions and Experimental Methods 160
 7.2.2 Power Spectrum Analysis of Cutting Force 168
 7.3 Microstructural Characterisation of Deformation Banding 175
 7.3.1 Typical Cutting-Induced Shear Band 175
 7.3.2 Orthogonal Cutting-Induced Kink Band 177
 7.3.3 Cutting Induced Kinking Within the Sliding Region ... 179
References ... 184

Part III Theory and Mechanism of Ultra-Precision Diamond Turning

8 Shear Bands in Ultra-Precision Diamond Turning 189
 8.1 Shear Band Theory for Deformation Processes in Machining .. 189
 8.2 Regularly Spaced Shear Bands and Morphology of Serrated Chips . 191
 8.3 Finite Element Method Modelling for Elastic Strain-Induced Shear Bands . 197
 8.3.1 Characterisation of Elastic Strain-Induced Shear Bands ... 197
 8.3.2 Finite Element Method Modelling 198
 8.4 Analytical Model of Shear Band Formation and Influences 207
 8.4.1 Onset of the Formation of Shear Bands 208
 8.4.2 Formation of Shear Bands 210
 8.4.3 An Analytical Model of Cyclic Fluctuation of Cutting Force 211
 8.4.4 The Cyclic Fluctuation of the Displacement of the Tool Tip 213
 8.5 Generalised Shear Angle Model 215
References ... 217
9 Tool-Tip Vibration at High Frequencies ... 219
 9.1 Identification of Tool-Tip Vibration
 by Power Spectrum Analysis ... 219
 9.2 Characteristic Twin Peaks and Material Properties 221
 9.3 Modelling of Tool-Tip Vibration .. 226
 9.3.1 An Impact Model Without Damping 226
 9.3.2 Non-harmonic Periodic Excitation with Process
 Damping Effect ... 229
 9.4 Representative Measurement Method 234
 9.4.1 Influence of Tool-Tip Vibration
 on the Machined Surface 234
 9.4.2 Effect of Sample Locations on Surface Roughness 240
 9.4.3 Effect of Sample Area Ratios and Representative
 Measurement ... 242
 9.5 Modelling and Characterisation of Surface Roughness
 Generation .. 246
 9.5.1 Surface Generation Model with Tool-Tip Vibration 246
 9.5.2 Formation of Spiral Marks on the Machined Surface 248
 9.5.3 Spatial Error on the Profile in the Feed Direction 250
References ... 250

10 Dynamic Modelling of Shear Band Formation and Tool-Tip
 Vibration in Ultra-Precision Diamond Turning 253
 10.1 A Transient Analysis for Shear Band Formation 256
 10.2 Dynamic Model for Shear Band Formation 257
 10.2.1 Dynamic Model ... 257
 10.2.2 The Effect of Equivalent Cutting Velocity 259
 10.2.3 Validation and Application 260
References ... 265
Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning
To, S.; Wang, H.; Lee, W.B.
2018, X, 266 p. 199 illus., Hardcover
ISBN: 978-3-662-54821-9