Contents

Part I Overview

1 **Development of UHV Power Transmission** ... 3
 Ke Sun, Dongju Wang, Sha Li and Haifeng Qiu
 1.1 UHV Power Transmission ... 4
 1.1.1 Development of Power Transmission Voltage Level 4
 1.1.2 Voltage Level Sequence in Power Grid 6
 1.1.3 Selection of UHV Transmission Voltage Levels 11
 1.2 Development of UHV Power Transmission Technology 16
 1.2.1 The Former Soviet Union (Russia) 16
 1.2.2 Japan 17
 1.2.3 United States .. 19
 1.2.4 Canada 20
 1.2.5 Italy 20
 References ... 21

2 **Development of UHV Power Transmission in China** 23
 Ke Sun, Shichao Yuan and Yuting Qiu
 2.1 Necessity in the Development of UHV Power Transmission in China 24
 2.1.1 Objectively Required by the Sustained and Rapid Growth in Electricity Demands 24
 2.1.2 Objectively Required by the Long-Distance and Large-Capacity Power Transmission 24
 2.1.3 Objectively Required by the Basic Law of Power Grid Development 26
 2.1.4 Required to Ensure Safe and Reliable Energy Transmission 26
 2.2 Development Process of UHV Power Transmission in China 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Preliminary Study of UHV</td>
<td>27</td>
</tr>
<tr>
<td>2.2.2 Construction of UHV Test Base</td>
<td>28</td>
</tr>
<tr>
<td>2.2.3 China’s UHV Transmission Projects</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>3 Analysis on System Characteristics and Economy of UHV Power Transmission</td>
<td>39</td>
</tr>
<tr>
<td>Guang Chen, Hao Zhou, Jiuyuan Li and Jingzhe Yu</td>
<td></td>
</tr>
<tr>
<td>3.1 System Characteristics of UHVAC Power Transmission</td>
<td>40</td>
</tr>
<tr>
<td>3.1.1 Reliability and Stability</td>
<td>40</td>
</tr>
<tr>
<td>3.1.2 Transmission Characteristics and Transmission Capacity</td>
<td>41</td>
</tr>
<tr>
<td>3.2 System Characteristics of UHVDC Power Transmission</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1 Reliability and Stability</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2 Transmission Characteristics and Transmission Capacity</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Analysis on Economy of UHV Power Transmission</td>
<td>52</td>
</tr>
<tr>
<td>3.3.1 Comparison of Economy for UHVAC/EHVAC Power Transmission</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2 Comparison of Economy for UHVDC/EHVDC Power Transmission</td>
<td>55</td>
</tr>
<tr>
<td>3.4 Applicable Occasions of UHVAC/UHVDC Power Transmissions</td>
<td>57</td>
</tr>
<tr>
<td>3.4.1 Technical Characteristics of UHVAC/UHVDC Power Transmissions</td>
<td>57</td>
</tr>
<tr>
<td>3.4.2 Technical Advantages of UHV Power Transmission</td>
<td>57</td>
</tr>
<tr>
<td>3.4.3 Interconnection of UHV Power Grids</td>
<td>58</td>
</tr>
<tr>
<td>3.4.4 Applicable Occasions of UHVAC/UHVDC Power Transmissions</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>65</td>
</tr>
<tr>
<td>Part II Alternating Current</td>
<td></td>
</tr>
<tr>
<td>4 Power Frequency Overvoltage of UHV Power Transmission Lines</td>
<td>69</td>
</tr>
<tr>
<td>Hao Zhou, Qiang Yi, Sha Li and Jingzhe Yu</td>
<td></td>
</tr>
<tr>
<td>4.1 Mechanisms of Power Frequency Overvoltage</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1 No-Load Long-Line Capacitance Effect</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2 Asymmetrical Short-Circuit Fault of the Line</td>
<td>73</td>
</tr>
<tr>
<td>4.1.3 Power Frequency Overvoltage due to Three-Phase Load Shedding</td>
<td>74</td>
</tr>
<tr>
<td>4.2 Characteristics of UHV Power Frequency Overvoltage</td>
<td>77</td>
</tr>
<tr>
<td>4.3 Categories of UHV Power Frequency Overvoltage</td>
<td>78</td>
</tr>
</tbody>
</table>
6 Switching Overvoltage of UHVAC Systems. 199
Rongrong Ji, Hao Zhou and Xiujuan Chen
6.1 Switching Overvoltage Classification and Limiting Methods of UHVAC Systems ... 200
 6.1.1 Switching Overvoltage Classification of UHVAC Systems ... 200
 6.1.2 Common Methods for Limiting Switching Overvoltage in the UHVAC System 203
 6.1.3 New Methods for Limiting Switching Overvoltage in the UHVAC System 207
6.2 Single-Phase Ground Fault Overvoltage 209
 6.2.1 Mechanism for Generation 209
 6.2.2 Modeling and Simulation 211
 6.2.3 Analysis of Influence Factors 213
 6.2.4 Limitation Measures 224
6.3 Closing Overvoltage .. 239
 6.3.1 Mechanism for Generation 239
 6.3.2 Modeling and Simulation 244
 6.3.3 Analysis of Influence Factors 248
 6.3.4 Limitation Measures 262
 6.3.5 Research on Applicability of Closing Resistors for EHV and UHVAC Transmission Line Circuit Breakers ... 262
6.4 Opening Overvoltage .. 277
 6.4.1 Load Shedding Overvoltage 278
 6.4.2 Fault Clearing Overvoltage 285
6.5 Influence on the Electromagnetic Transient Characteristics by Series Compensation Device ... 293
 6.5.1 Composition of Series Compensation Device 293
 6.5.2 Influence on the Closing Switching Overvoltage by Series Compensation Device 294
 6.5.3 Influence on Power Frequency Overvoltage by Series Compensation Device 294
 6.5.4 Influence on Secondary Arc Current by Series Compensation Device 295
 6.5.5 Linkage Between Series Compensation Device and Circuit Breaker 296

References ... 296
7 Very Fast Transient Overvoltage of UHVAC System 299
Yang Li, Guoming Ma and Hao Zhou
7.1 Generation Mechanism and Characteristics of VFTO 300
7.2 Harm of VFTO .. 303
 7.2.1 Harm of VFTO to GIS Main Insulation 304
7.2.2 Influence of VFTO on Power Transformer 304
7.2.3 Influence of VFTO on the Secondary Equipment 307
7.2.4 Cumulative Effect of VFTO 307

7.3 VFTO in 1000 kV GIS Substation Under Different Operation Conditions .. 307
7.3.1 VFTO Generated Due to Operation with Main Transformer ... 309
7.3.2 VFTO Generated Due to Operation with Outgoing Line ... 309
7.3.3 VFTO Generated Due to Operation with Busbar 310

7.4 Influence Factors of VFTO 311
7.4.1 Influence of the Residual Voltage at Load Side on the Amplitude of VFTO 312
7.4.2 Influence of the Capacitance at Inlet of Transformer on VFTO .. 312
7.4.3 Influence of Arc Resistance on the Amplitude of VFTO .. 313
7.4.4 Influence of Zinc Oxide Arrester on VFTO 314

7.5 Comparison of VFTO in 500 and 1000 kV GIS Substations 314
7.5.1 Switch Operation Sequence in Substation Under Typical Disconnector Operating Mode 315
7.5.2 VFTO Restriction Level by Equipment in 500/1000 kV GIS Substation 318
7.5.3 Comparison of VFTO in Typical 500 and 1000 kV GIS Substations .. 319
7.5.4 Conclusions on Influences on the 500 and 1000 kV GIS Substations by VFTO 324
7.5.5 Discussion on Whether to Install Parallel Resistance of Disconnector in the 500 and 1000 kV GIS Substations ... 325

7.6 Comparison of Characteristics of VFTO in Substation and Power Plant ... 325
7.6.1 Comparison of Wiring Diagrams for Substation and Power Plant ... 325
7.6.2 Comparison of Characteristics of VFTO in the UHV GIS Substation and the Power Plant 327
7.6.3 Conclusions on Comparison of VFTO in UHV GIS Substation and Power Plant 332

7.7 Restriction and Protection Measures 333
7.7.1 Rational Arrangement of Operation Sequence of Circuit Breakers and Disconnectors 333
7.7.2 Installation of Generator Outlet Circuit Breaker in the Power Plant 334
7.7.3 Additional Installation of Parallel Resistance on the Disconnector ... 336
7.7.4 Ferrite Toroid .. 337
7.7.5 Overhead Line .. 338
7.7.6 Other Measures .. 339
7.8 Quantitative Study on the Restriction of Wave Front Steepness of VFTO Invading the Main Transformer Port by the Overhead Line .. 339
7.8.1 Experimental Study of the Influence on the VFTO Wave Front Steepness by the Overhead Line Length .. 340
7.8.2 Simulation Analysis of the Influence on the VFTO Wave Front Steepness by Overhead Line Length 343
7.8.3 Further Discussion on Restriction of Wave Front Steepness of VFTO Invading the Main Transformer by Means of Overhead Line in the 1000 kV Power Plant .. 350
7.9 Study on Transient Enclosure Voltage (TEV) of GIS in Substation and Power Plant 354
7.9.1 Principle for Its Generation 355
7.9.2 TEV Calculation Method 355
7.9.3 Measures to Reduce the Transient Enclosure Voltage .. 357
7.10 Experimental Investigation on VFTO Characteristics in the UHV GIS System in China 358
7.10.1 VFTO Characteristic Test Circuit 358
7.10.2 VFTO Generation Mechanism and Waveform Characteristics .. 360
7.10.3 Tests on the Effect of Operating Speed of Disconnectors on VFTO .. 362
7.10.4 Tests and Studies on the Effect of Branch Busbar Length on VFTO 368
7.10.5 Effect of Connection Direction of Disconnector Contacts on VFTO .. 371
7.11 Conclusions on VFTO Characteristics in the 500/1000 kV GIS Substation and Power Plant 377
8 Lightning Protection of UHVAC System 383
8.1 Lightning Protection of the UHVAC Lines 384
8.1.1 Overview .. 384
8.1.2 Calculation Methods for Assessment of Lightning Withstand Performance 390
10.3.2 Determination of Air Clearance Under Switching Impulse Voltage .. 520
10.3.3 Determination of Air Clearance Under Lightning Impulse Voltage 537
10.3.4 Selection of Line’s Air Clearance of the UHV System Under Three Types of Overvoltage 542
10.3.5 Selection of Air Clearance of the UHV Lines in Various Countries 543

References .. 544

11 UHVAC Electrical Equipment .. 547
Xiaode Hu, Yang Li and Xiujuan Chen

11.1 UHV Transformer .. 547
11.1.1 Status Quo of the UHV Transformers in China and Other Countries 548
11.1.2 Characteristics and Type Selection of the UHV Transformer ... 549
11.1.3 Main Parameters of the UHV Transformers Used for the UHVAC Demonstration Project 553

11.2 UHV Shunt Reactor ... 554
11.2.1 Structural Design ... 556
11.2.2 Insulation Design ... 558
11.2.3 Cooling Mode .. 558
11.2.4 Noise Control .. 559
11.2.5 UHV Controllable Shunt Reactor 560

11.3 UHV Instrument Transformer 561
11.3.1 Status Quo of the UHV Voltage Transformers and Current Transformers in China and Other Countries ... 561
11.3.2 UHV Voltage Transformer 562
11.3.3 UHV Current Transformer 564
11.3.4 Photoelectric UHV Instrument Transformer . 565

11.4 UHV Arrester .. 566
11.4.1 Status Quo of the UHV Arresters in China and Other Countries .. 566
11.4.2 Characteristics of the UHV Arrester 566
11.4.3 Main Parameters of the UHV Arresters Used in the UHVAC Demonstration Projects 568
11.4.4 UHVAC Controllable Arrester 568

11.5 UHV Switchgear .. 572
11.5.1 Status Quo of the UHV Switchgear in China and Other Countries 572
11.5.2 Characteristics of UHV Switchgear 573
11.6 UHV Bushing .. 576
 11.6.1 Status Quo of UHV Bushing in China and Other Countries 576
 11.6.2 Characteristics of the UHV Bushing 577
11.7 UHV Series Compensation Device ... 578
 11.7.1 Status Quo of the UHV Series Compensation Device in China and Other Countries 578
 11.7.2 Protection Mode of the UHV Series Compensation Device 579

References ... 579

12 UHV Power Frequency Electromagnetic Induction 581
 Baoju Li, Jidong Shi and Yijing Su
 12.1 Induced Voltage and Current of the 1000 kV Double-Circuit Line on the Same Tower 582
 12.1.1 Generation Mechanism and Four Different Induction Parameters 582
 12.1.2 Simulation Calculation of Induced Voltage and Current 585
 12.1.3 Analysis on Influence Factors of Induced Voltage and Induced Current 588
 12.2 Induced Voltage and Induced Current on Overhead Ground Wires of 1000 kV AC Transmission Line 589
 12.2.1 Induced Voltage and Induced Current on Overhead Ground Wires of the UHV Single-Circuit Line 591
 12.2.2 Induced Voltage and Induced Current on Overhead Ground Wires of the UHV Double-Circuit Line on the Same Tower 593
 12.2.3 Selection of Insulation Gap and Withstand Voltage of the UHV Overhead Insulated Conductors 594
 12.3 Power Frequency Electromagnetic Induction Influence of the AC Line on the UHVDC Line Erected in Parallel with It 595
 12.3.1 Power Frequency Electromagnetic Induction by the UHVAC Line to the UHVDC Line Erected in Parallel with It 596
 12.3.2 Influence Factors of the Electromagnetic Induction by the AC Line to the DC Line Erected in Parallel with It 599
 12.3.3 Comparative Analysis on Parallel Erection of the UHV Single-Circuit and Double-Circuit on the Same Tower of AC Line and the UHVDC Line .. 606
12.3.4 Comparative Analysis on Parallel Erection of the EHV/UHVAC Transmission Line and UHVDC Line ... 608
References ... 610

13 Electromagnetic Environment of UHVAC System 611
Xiao Zhang, Haiqing Lu, Yang Shen and Chuan He
13.1 Comparison Between Electromagnetic Environment of UHV and EHV Transmission Lines 612
13.2 Electromagnetic Environment of the UHVAC Transmission Line ... 614
13.2.1 Power Frequency Electric Field 614
13.2.2 Power Frequency Magnetic Field 622
13.2.3 Corona Loss ... 625
13.2.4 Radio Interference ... 629
13.2.5 Audible Noise .. 639
13.3 Optimized Phase Sequence Arrangement of the UHV Double-Circuit Transmission Line 645
13.3.1 Impact on Electromagnetic Environment 647
13.3.2 Impact on Natural Power 648
13.3.3 Impact on Unbalance Degree of Line 649
13.3.4 Impact on Lightning Withstand Performance 651
13.3.5 Impact on Induced Voltage and Current of Ground Wire ... 652
13.3.6 Recommended Optimal Phase Sequence for UHV Double-Circuit Line on the Same Tower 653
13.4 Safe Distance of UHV Transmission Line Over Buildings .. 654
13.4.1 Necessity of Research on Safe Distance 654
13.4.2 Calculation Methods and Simulation Models 655
13.4.3 Discussion on Influence Factors of Distorted Electric Field ... 658
13.4.4 Calculation of Safe Distance for UHV Transmission Line Over Building .. 666
13.5 Electromagnetic Environment of UHVAC Substation ... 667
13.5.1 Power Frequency Electric Field 667
13.5.2 Power Frequency Magnetic Field 668
13.5.3 Radio Interference ... 669
13.5.4 Noise .. 669
References ... 670

14 Principles and Configurations of UHVAC Protection 671
Laqin Ni, Jiyuan Li and Zhiyong Qiu
14.1 Basic Overview of UHVAC Protection 671
14.1.1 Basic Requirements of UHVAC Protection 671
14.1.2 Setting Principles of the UHVAC Protection 672
14.1.3 Characteristics of UHVAC Protection 674
14.2 Principles and Configurations of UHVAC Protection 683
14.2.1 Principles and Configurations of Line Protection ... 684
14.2.2 Principles and Configurations of CB Protection ... 695
14.2.3 Principles and Configurations of Busbar Protection .. 699
14.2.4 Principles and Configurations of Transformer Protection .. 703
14.2.5 Principles and Configurations of HV Shunt Reactor Protection 716
14.2.6 Principles and Configurations of LV Shunt Reactor and LV Capacitor Protection 722
References ... 725

Part III Direct Current

15 Basic Information and Calculation of Main Parameters for UHVDC Transmission System 729
Yang Shen, Xilei Chen and Yuting Qiu
15.1 Operating Principle of Converter 729
15.1.1 6-Pulse Converter 731
15.1.2 12-Pulse Converter 738
15.1.3 Double 12-Pulse Converter Connected in Series ... 739
15.2 Operating Modes of the UHVDC Transmission System 740
15.2.1 Selection of Voltage Level of UHVDC Converters .. 741
15.2.2 Operating Modes of UHVDC System 742
15.3 Calculation of Main Circuit Parameters of UHVDC System .. 748
15.3.1 Main Connection and Operation Modes of UHVDC Transmission Project 750
15.3.2 Rated Operating Parameters of DC System 751
15.3.3 Rated Operating Parameters of AC System 752
15.3.4 Parameters of DC Line 752
15.3.5 Equipment Parameters 753
15.3.6 Operating Parameters of DC System 763
References ... 765

16 Switching Overvoltage of UHVDC System 767
Dongju Wang, Hao Zhou and Jiyuan Li
16.1 Classification and Characteristics of Switching Overvoltage in UHVDC System 768
16.1.1 Classification of Switching Overvoltage 768
16.1.2 Characteristics of UHVDC Switching Overvoltage ... 769
16.1.3 Type of Faults Resulting in Switching Overvoltage .. 771
16.2 Simulation Model of DC System 772
16.2.1 Model for Main Circuit of DC System 772
16.2.2 Model of DC Control System 773
16.2.3 Scheme for Arrangement of Arresters in Converter Station .. 777
16.3 Switching Overvoltage at AC Side 778
16.3.1 Three-Phase Ground Fault and Clearing 780
16.3.2 Loss of AC Power Supply at the Inverter Side 782
16.3.3 Internal Overvoltage of AC Filters 786
16.4 Switching Overvoltage in Valve Hall 793
16.4.1 Switching Overvoltage on Valve Arrester V11/V1 .. 795
16.4.2 Switching Overvoltage on Valve Arrester V12/V2 .. 801
16.4.3 Switching Overvoltage on Valve Arrester V3 804
16.4.4 Switching Overvoltage on DC Converter Busbar Arrester .. 808
16.5 Switching Overvoltage in DC Field 811
16.5.1 Overvoltage on DC Pole Line 811
16.5.2 Overvoltage on Neutral Busbar 818
16.5.3 Internal Overvoltage of DC Filter 830
16.6 Monopolar Ground Fault Overvoltage of DC Line 836
16.6.1 Conditions for Simulation 837
16.6.2 Simulation Calculation Results 840
16.6.3 Analysis of Overvoltage Mechanism 847
16.6.4 Overvoltage Control and Protection Measures 854
References .. 855

17 Lightning Overvoltage of UHVDC Transmission System 857
Pan Dai, Hao Zhou and Bincai Zhao
17.1 Lightning Protection of UHVDC Transmission Line 858
17.1.1 Main Differences in Lightning Protection of AC and DC Lines 858
17.1.2 Characteristics of Lightning Withstand Performance for UHVDC Line 861
17.1.3 Analysis of Lightning Protection for the ±800 kV UHVDC Transmission Line 862
17.2 Lightning Protection of UHVDC Converter Station 866
17.2.1 Protection Characteristics of Lightning Invasion Wave for DC Converter Station 866
17.2.2 Calculation Method for Lightning Intruding Overvoltage in DC Converter Station 868
17.2.3 Analysis for Overvoltage Protection of Lightning Invasion Wave in ±800 kV DC Converter Station 874
References ... 886

18 Insulation Coordination of UHVDC Converter Station 887
Xilei Chen, Hao Zhou and Xu Deng
18.1 Basic Procedures for Determining the Insulation Level of Equipment 888
18.2 Overview of UHVDC Arrester .. 889
18.2.1 Characteristics of UHVDC Arrester 889
18.2.2 Definition of Basic Parameters of UHVDC Arrester ... 890
18.3 Configuration of Arresters in Converter Station 891
18.3.1 Basic Principles for Configuration of Arresters 891
18.3.2 Configuration Scheme of Arresters in Converter Station .. 892
18.3.3 Characteristics for Configuration of Arresters in UHVDC Converter Station 897
18.4 Selection of Parameters for UHVDC Arresters 898
18.4.1 Basic Principles for Selection of Parameters for Arresters .. 898
18.4.2 Arresters at AC Side .. 899
18.4.3 Arresters at DC Side 901
18.4.4 Difference in Parameters of Arresters for Converter Stations at Both Terminals 911
18.5 Determination for Insulation Level of Converter Station’s Equipment .. 913
18.5.1 Method for Insulation Coordination of Converter Station’s Equipment 913
18.5.2 Insulation Margin .. 913
18.5.3 Protection Level and Insulation Level 915
18.6 Scheme for Separate Arrangement of Smoothing Reactors 916
18.6.1 Economic and Technical Advantages of Separate Arrangement of Smoothing Reactors 918
18.6.2 Necessity for Adoption of Separate Arrangement of Smoothing Reactors in UHVDC System 923
18.7 Minimum Air Clearance in Converter Station 924
18.7.1 Air Clearance Discharge Characteristic Test of Pole Busbar in Converter Station 927
18.7.2 Equation Method for Design of Minimum Air Clearance 930
18.7.3 Non-standard Atmospheric Correction Method .. 933
18.8 Polluted External Insulation of Converter Station 942
18.8.1 Operation Experience of Polluted External Insulation of Chinese ±500 kV Converter Stations .. 942
18.8.2 Selection of Post Insulators in Converter Stations 946
18.8.3 External Insulation Design of Post Insulators in Converter Station 947
18.8.4 Creepage Distance of DC Wall Bushing in Converter Station 954
References .. 956

19 Insulation Coordination of UHVDC Transmission Line 959
Jidong Shi, Hao Zhou and Xu Deng
19.1 Selection of Type and Number of Insulators for UHVDC Transmission Line ... 960
19.1.1 Selection of Material and Umbrella Type of Insulators 960
19.1.2 Type Selection of Insulator Strings ... 963
19.1.3 Determination of the Insulators’ Number 964
19.1.4 Selection of Insulators in Icing Area ... 974
19.2 Determination of Air Clearance for UHVDC Transmission Line 978
19.2.1 Determination of Air Clearance Under DC Voltage 983
19.2.2 Determination of Air Clearance Under Switching Impulse 984
19.2.3 Determination of Air Clearance Under Lightning Impulse 985
19.2.4 Code-Recommended Value and Engineering-Applied Value for Air Clearance of UHVDC Line 986
References .. 987

20 Overvoltage Characteristics and Insulation Coordination of UHVDC Converter Valves ... 989
Kunpeng Zha, Xiaoguang Wei and Jie Liu
20.1 Analysis on Overvoltage Characteristics of Converter Valves Under the Effect of Impulse Voltage 990
20.1.1 Extraction of Parasitic Capacitance of Converter Valve System ... 990
20.1.2 Analysis Model for Impulse Transient of Converter Valve System 994
20.1.3 Characteristics of Impulse Transient Overvoltage of Converter Valve System 994

20.2 Analysis on Overvoltage Characteristics of Converter Valve Under Operating Condition 996
20.2.1 Analysis on Turn-off Transient Overvoltage of Converter Valve 998
20.2.2 Physical Simulation Method .. 1000
20.2.3 Classical Method .. 1001
20.2.4 Time-Domain Circuit Method .. 1002

20.3 Overvoltage Protection of DC Transmission Converter Valve and Its Design 1004
20.3.1 Strategy Selection for Insulation Coordination of Converter Valves 1005
20.3.2 Overvoltage Protection Function of Gate Electronic Circuit .. 1005

20.4 Study on Insulation Coordination for DC Transmission Converter Valves 1007
20.4.1 Calculation Method for Creepage Distance .. 1007
20.4.2 Calculation Method for Air Clearance ... 1008

References ... 1008

21 UHVDC Electrical Equipment .. 1009
Xu Deng, Anwen Xu and Yuting Qiu

21.1 Arrangement of UHVDC Equipment ... 1009

21.2 UHV Converter Valve .. 1012
21.2.1 Structure of UHV Converter Valve ... 1013
21.2.2 Characteristics of UHV Converter Valve .. 1016
21.2.3 Tests of UHV Converter Valve .. 1018
21.2.4 Manufacturing Level of UHV Converter Valve ... 1018

21.3 UHV Converter Transformer .. 1019
21.3.1 Structure of UHV Converter Transformer ... 1020
21.3.2 Characteristics of UHV Converter Transformer ... 1021
21.3.3 Tests of UHV Converter Transformer .. 1024
21.3.4 Manufacturing Level of UHV Converter Transformer .. 1025

21.4 UHV Smoothing Reactor .. 1026
21.4.1 Structure of UHV Smoothing Reactor ... 1026
21.4.2 Characteristics of UHV Smoothing Reactor ... 1028
21.4.3 Tests of UHV Smoothing Reactor .. 1030
21.4.4 Manufacturing Level of UHV Smoothing Reactor 1030
21.5 UHVAC and DC Filters 1031
 21.5.1 UHVAC Filter 1031
 21.5.2 UHVDC Filter 1033
 21.5.3 Tests of UHVAC/DC Filters 1036
 21.5.4 Manufacturing Level of UHVAC/UHVDC Filters 1036
21.6 UHVDC Arrester 1037
 21.6.1 Type of UHVDC Arrester 1037
 21.6.2 Characteristics of UHVDC Arrester 1038
 21.6.3 Tests of UHVDC Arrester 1041
 21.6.4 Manufacturing Level of UHVDC Arrester 1042
21.7 UHV Bushing 1042
 21.7.1 Structure of UHV Bushing 1043
 21.7.2 Characteristics of UHV Bushing 1045
 21.7.3 Tests of UHV Bushing 1047
 21.7.4 Manufacturing Level of UHV Bushing 1047
21.8 UHVDC Switchgear 1047
 21.8.1 UHVDC Transfer Switch 1048
 21.8.2 UHVDC Disconnector and Grounding Switch 1052
 21.8.3 UHVDC Bypass Switch 1052
 21.8.4 Tests of UHVDC Switchgear 1054
21.9 UHVDC Measuring Equipment 1054
 21.9.1 UHVDC Voltage Measuring Equipment 1054
 21.9.2 UHVDC Current Measuring Equipment 1055
References ... 1056

22 Electromagnetic Environment of UHVDC System 1059
Yiru Wan, Xiao Zhang and Jiyuan Li
22.1 Electromagnetic Environmental Issues of UHVDC
 Transmission Line 1060
 22.1.1 Electric Field Intensity and Ion Flow Density .. 1061
 22.1.2 DC Magnetic Field 1064
 22.1.3 Surface Electric Field Intensity of Conductor ... 1065
 22.1.4 Radio Interference 1074
 22.1.5 Audible Noise 1077
 22.1.6 Corona Loss 1081
22.2 Electromagnetic Environmental Assessment of UHVDC
 Transmission Lines 1084
 22.2.1 Electric Field Intensity and Ion Flow Density .. 1085
 22.2.2 Magnetic Induction Intensity 1087
 22.2.3 Radio Interference 1087
 22.2.4 Audible Noise 1089
22.3 Analysis on Electromagnetic Environmental Impact Factors of UHVDC Transmission Line

22.3.1 Influence of the Pole Conductor Height Above the Ground

22.3.2 Influence of the Interpolar Distance

22.3.3 Influence of Bundling Spacing of Pole Conductors

22.3.4 Influence of the Number of Bundled Sub-conductors

22.3.5 Influence of Cross-Sectional Area of Pole Conductors

22.3.6 Influence of Altitude

22.4 Measures for Improving the Electromagnetic Environment of DC Transmission Lines

22.5 Electromagnetic Environment of UHVDC Converter Station

22.5.1 Noise Sources of Converter Station

22.5.2 Noise Control Indicators of Converter Station

22.5.3 Noise Control Measures of Converter Station

References

23 Comparison of Overvoltage and Insulation Coordination of ±800 kV and ±1100 kV UHVDC Systems

23.1 System Parameters

23.2 Configuration and Parameters of Arresters in Converter Station

23.2.1 Configuration of Arresters in Converter Station

23.2.2 Basic Parameters of Arresters

23.3 Analysis and Contrast of Overvoltage in Converter Station

23.3.1 Overvoltage at AC Side

23.3.2 Overvoltage in Valve Hall

23.3.3 Overvoltage at DC Line Side

23.3.4 Neutral Busbar Overvoltage

23.4 Insulation Coordination of ±1100 kV UHVDC Power Transmission System

23.4.1 Configuration Scheme for Arresters in Converter Station

23.4.2 Influence of Short Circuit Impedance on Insulation Level of Equipment

23.4.3 Insulation Level of Equipment

23.5 Discussion on Converter Combination for ±1100 kV UHVDC System
23.5.1 Discussion on Combination of ±1100 kV Converters .. 1132
23.5.2 Selection of Combination Scheme for Converters of ±1100 kV UHVDC System 1137
References ... 1138

24 Principles and Configurations of UHVDC Protection ... 1139
Taoxi Zhu
24.1 Overview of UHVDC Protection .. 1139
24.1.1 Basic Requirements of UHVDC Protection 1139
24.1.2 Action Result of UHVDC Protection 1140
24.1.3 Zone of UHVDC Protection ... 1143
24.1.4 Measuring Points of UHVDC Protection 1144
24.2 Principles and Configurations for UHVDC Protection 1147
24.2.1 Protection of Converter Area 1147
24.2.2 Protection of Polar Area ... 1163
24.2.3 Bipolar Area Protection .. 1170
24.2.4 Protection of DC Line Area 1177
24.2.5 Protection of DC Filter Area 1182
24.2.6 Protection of DC Switch ... 1188
24.2.7 Coordination Relation of DC Protection 1192
24.3 Difference Between UHVDC Protection and Conventional DC Protection 1195
24.3.1 Configuration of Protective Devices 1195
24.3.2 Protection Configuration and Principle 1195
References ... 1197

Part IV Design of UHV Power System

25 Design of Ultra-High-Voltage Alternating Current (UHVAC) Substation 1201
Feng Qian, Wenqian Qiu, Jian Ding, Chunxiu An, Hongbo Liu, Jianhua Chen and Yang Shen
25.1 Design Depth Requirements and Main Standards .. 1202
25.1.1 Design Depth Requirements 1202
25.1.2 Main Standards .. 1202
25.1.3 Key and Difficult Issues of Design 1203
25.2 Site Selection and General Layout .. 1203
25.2.1 Site Selection ... 1203
25.2.2 General Planning and Layout 1205
25.3 Main Electrical Connection .. 1206
25.4 Overvoltage Protection .. 1207
25.5 Minimum Air Clearance .. 1210
25.6 Insulation Level of Electrical Equipment ... 1210

xxvi Contents
25.7 Selection of Main Electrical Equipment 1212
25.7.1 Electrical Calculation 1212
25.7.2 Main Transformer 1212
25.7.3 Switchgear 1215
25.7.4 Voltage Transformer 1215
25.7.5 UHV Shunt Reactor 1216
25.8 UHV Distribution Equipment 1217
25.8.1 Classification and Design Principle of UHV
Distribution Equipment 1217
25.8.2 Minimum Safety Clearance Values
A, B, C, and D ... 1225
25.8.3 Main Features of UHV Distribution Equipment 1227
25.8.4 Size Determination of 1000 kV Distribution
Equipment .. 1227
25.9 Connection and Layout of Shunt Compensation Device 1230
25.9.1 Classification of Shunt Compensation Devices 1232
25.9.2 Grouping Capacity of Shunt Compensation
Devices .. 1232
25.9.3 Shunt Compensation Devices 1234
25.9.4 Layout of Shunt Compensation Devices 1235
25.10 Connection and Layout of Station-Service Power 1236
25.10.1 Main Design Principles 1236
25.10.2 Connection of Station-Service Power 1236
25.10.3 Station-Service Equipment and Layout 1236
25.10.4 Lighting and Maintenance 1237
25.11 General Plan and Vertical Layout 1237
25.11.1 General Layout Plan 1237
25.11.2 Vertical Layout 1240
25.11.3 Roads of Substation 1241
25.12 Main Buildings (Structures) 1241
25.12.1 Buildings of Substation 1241
25.12.2 UHV Substation Framework 1245
25.12.3 UHV GIS Equipment Foundation 1255
25.13 Secondary Electrical Connection 1258
25.13.1 Main Design Principles 1258
25.13.2 Computer-Based Monitoring System 1259
25.13.3 Element Protection 1261
25.13.4 System Protection 1263
25.13.5 System Communication 1267
25.13.6 Dispatching Automation System 1268
25.13.7 Electric Energy Metering and Billing System 1268
25.13.8 Operating Power Supply System and Others 1269
25.13.9 Equipment Status On-Line Monitoring System 1270
References .. 1271

26 Design of UHVDC Converter Station 1273
Zhichao Zhou, Xiaofei Ding, Wenqian Qiu, Jianhua Chen,
Chunxiu An and Sheng Liu
26.1 Site Selection and General Layout 1274
26.1.1 General Requirements 1274
26.1.2 General Layout 1274
26.1.3 Heavy-Duty Equipment Transport 1275
26.1.4 Water Supply to Converter Station 1276
26.1.5 Environmental Impact 1277
26.2 Main Electrical Connection 1278
26.2.1 Connection of Converter Unit 1278
26.2.2 Connection of DC Switchyard 1278
26.2.3 AC Switchyard Connection 1285
26.2.4 AC Filter Connection 1285
26.3 Overvoltage Protection of Converter Station 1286
26.4 Insulation Levels of Equipment 1287
26.5 Minimum Air Clearance Distance 1291
26.6 Selection of Main Electrical Equipment 1296
26.6.1 Calculation of Short-Circuit Current 1296
26.6.2 Converter Valve 1303
26.6.3 Converter Transformer 1306
26.6.4 Smoothing Reactor 1308
26.6.5 AC Filter and Shunt Capacitor 1309
26.6.6 DC Filter .. 1310
26.6.7 Other DC Equipment 1310
26.6.8 Wall Bushing 1314
26.7 Vertical Layout Design 1315
26.7.1 Main Tasks and Design Principles 1315
26.7.2 Vertical Layout with Slight Slope and Slope
Selection .. 1316
26.7.3 Vertical Layout with Terrace 1316
26.7.4 Vertical Layout of Buildings and Structures 1317
26.8 Power Distribution Device of UHVDC Converter Station ... 1317
26.8.1 Converter Area Layout 1318
26.8.2 DC Switchyard Arrangement 1329
26.8.3 Layout of AC Filter Yard 1332
26.8.4 Layout of AC Power Distribution Devices 1340
26.8.5 Summary of Electrical General Layout 1340
26.9 Buildings in Converter Station 1341
26.9.1 Main Buildings and Structures 1341
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.9.2 Valve Hall</td>
<td>1342</td>
</tr>
<tr>
<td>26.9.3 Control Building and Auxiliary Equipment Building</td>
<td>1343</td>
</tr>
<tr>
<td>26.9.4 Indoor DC Yard</td>
<td>1344</td>
</tr>
<tr>
<td>26.9.5 GIS House</td>
<td>1344</td>
</tr>
<tr>
<td>26.9.6 Other Buildings</td>
<td>1344</td>
</tr>
<tr>
<td>26.9.7 Type of Structure</td>
<td>1344</td>
</tr>
<tr>
<td>26.10 Connection and Layout of Substation-Service Power</td>
<td>1345</td>
</tr>
<tr>
<td>26.11 Secondary System</td>
<td>1346</td>
</tr>
<tr>
<td>26.11.1 Control and Protection of AC and DC Systems</td>
<td>1346</td>
</tr>
<tr>
<td>26.11.2 AC Protection System and Safety and Stabilizing Devices</td>
<td>1356</td>
</tr>
<tr>
<td>26.11.3 Dispatching Automation</td>
<td>1357</td>
</tr>
<tr>
<td>26.11.4 System Communication</td>
<td>1359</td>
</tr>
<tr>
<td>References</td>
<td>1360</td>
</tr>
</tbody>
</table>

27 Design of Ultra-High-Voltage Alternating Current (UHVAC) Power Transmission Lines .. 1361

Jiamiao Chen, Wenqian Qiu, Feng Pan and Gang Song

27.1 Design Basis .. 1363
27.2 Line Routes ... 1363
27.3 Design Meteorological Conditions ... 1364
 27.3.1 Principles of Selection ... 1364
 27.3.2 Basic Wind Speed ... 1364
 27.3.3 Design Icing ... 1366
27.4 Selection of Conductor and Ground Wire of AC Lines 1367
 27.4.1 Main Parameters for Conductor Selection .. 1368
 27.4.2 Conductor Cross-Section and Bundled Configuration 1372
 27.4.3 Phase-Sequence Arrangement of the Double-Circuit Conductors 1374
 27.4.4 Application of Expanded Conductors ... 1376
 27.4.5 Selection of Ground Wire and OPGW Optical Cable 1379
27.5 Insulation Coordination Design of AC Transmission Line 1382
 27.5.1 Type Selection of Insulators .. 1383
 27.5.2 Selection of the Number of Pieces of Insulator Strings 1387
 27.5.3 Air Clearance at Tower Head ... 1390
 27.5.4 Lightning Protection and Grounding Design ... 1392
27.6 Design of AC Line Insulator Strings and Fittings 1394
 27.6.1 Basic Principles ... 1394
 27.6.2 Safety Factor .. 1395
 27.6.3 Suspension Insulator String of Conductor ... 1396
27.6.4 Strain Insulator String of Conductor 1398
27.6.5 Jumper Fitting String of Strain Tower 1399
27.6.6 Main Fittings 1402
27.7 Conductor Transposition Design for AC Line 1406
 27.7.1 Main Content of Conductor Transposition Design 1407
 27.7.2 Determination of Unbalance Factor Limits 1407
 27.7.3 Calculation of Unbalance Factor for Power Transmission Line 1408
 27.7.4 Selection of Transposition Ways 1410
27.8 Tower Design for UHV Transmission Line 1412
 27.8.1 Types and Characteristics of Tower 1412
 27.8.2 Tower Loads and Combinations 1417
 27.8.3 Materials of Tower 1418
 27.8.4 Optimization Design of Tower Structure 1421
 27.8.5 Issues to Be Noticed in the Design of Tower Structure 1425
References ... 1427

28 Design of UHVDC Transmission Lines 1429
 28.1 Selection of Conductors for DC Line 1430
 28.1.1 Main Principles for Conductor Selection .. 1430
 28.1.2 Conductor Section and Bundle Configuration .. 1431
 28.1.3 Main Electrical Properties of Conductor .. 1433
 28.1.4 Selection of Ground Wire Types 1440
 28.2 Insulation Coordination Design of DC Line 1440
 28.2.1 Pollution Investigation and Polluted Area Classification 1441
 28.2.2 Insulator Types 1442
 28.2.3 Selection of the Number of Insulators for the Insulator Strings 1445
 28.2.4 Air Clearance of Tower Head 1452
 28.3 Design of Insulator Strings and Fittings of DC Line 1453
 28.3.1 Insulator String of Conductor 1453
 28.3.2 Selection of Main Fittings 1457
 28.4 Clearance of Conductor to Ground for DC Line 1459
 28.4.1 Minimum Clearance of Conductor to Ground 1459
 28.4.2 Relation Between Clearance of Conductor to Ground and Environmental Climate 1460
 28.5 Tower Design of DC Line 1461
 28.5.1 Tower Types of DC Line 1461
 28.5.2 Structural Characteristics of Towers for DC Line 1463
28.5.3 Tower Load and Combination 1465
28.5.4 Tower Materials of DC Line 1465
28.5.5 Issues to Be Noticed in Tower Design 1467

28.6 Foundation Design for DC Line 1469
28.6.1 Common Foundation Types 1469
28.6.2 Issues to Be Noticed in Foundation Design 1470
28.6.3 Treatment Measures for Foundations Under
 Special Geological Conditions 1473
28.6.4 Mechanical Construction of Foundations 1474

References .. 1475
Ultra-high Voltage AC/DC Power Transmission
Zhou, H.; Qiu, W.; Sun, K.; Chen, J.; Deng, X.; Qian, F.;
Wang, D.; Bincai, Z.; Li, J.; Li, S.; Qiu, Y.; Yu, J. (Eds.)
2018, XXXIV, 1475 p. 641 illus. In 2 volumes, not available separately. Hardcover
ISBN: 978-3-662-54573-7