Contents

Part I Overview

1 Development of UHV Power Transmission 3
 Ke Sun, Dongju Wang, Sha Li and Haifeng Qiu
 1.1 UHV Power Transmission 4
 1.1.1 Development of Power Transmission Voltage
 Level .. 4
 1.1.2 Voltage Level Sequence in Power Grid 6
 1.1.3 Selection of UHV Transmission Voltage Levels ... 11
 1.2 Development of UHV Power Transmission Technology 16
 1.2.1 The Former Soviet Union (Russia) 16
 1.2.2 Japan 17
 1.2.3 United States 19
 1.2.4 Canada 20
 1.2.5 Italy 20
 References ... 21

2 Development of UHV Power Transmission in China 23
 Ke Sun, Shichao Yuan and Yuting Qiu
 2.1 Necessity in the Development of UHV Power Transmission
 in China .. 24
 2.1.1 Objectively Required by the Sustained and Rapid
 Growth in Electricity Demands 24
 2.1.2 Objectively Required by the Long-Distance
 and Large-Capacity Power Transmission 24
 2.1.3 Objectively Required by the Basic Law
 of Power Grid Development 26
 2.1.4 Required to Ensure Safe and Reliable Energy
 Transmission 26
 2.2 Development Process of UHV Power Transmission
 in China .. 27
3 Analysis on System Characteristics and Economy of UHV Power Transmission

Guang Chen, Hao Zhou, Jiuyuan Li and Jingzhe Yu

3.1 System Characteristics of UHVAC Power Transmission
 3.1.1 Reliability and Stability .. 40
 3.1.2 Transmission Characteristics and Transmission Capacity 41

3.2 System Characteristics of UHVDC Power Transmission
 3.2.1 Reliability and Stability .. 48
 3.2.2 Transmission Characteristics and Transmission Capacity 51

3.3 Analysis on Economy of UHV Power Transmission
 3.3.1 Comparison of Economy for UHVAC/EHVAC Power Transmission 52
 3.3.2 Comparison of Economy for UHVDC/EHVDC Power Transmission 55

3.4 Applicable Occasions of UHVAC/UHVDC Power Transmissions
 3.4.1 Technical Characteristics of UHVAC/UHVDC Power Transmissions 57
 3.4.2 Technical Advantages of UHV Power Transmission 57
 3.4.3 Interconnection of UHV Power Grids 58
 3.4.4 Applicable Occasions of UHVAC/UHVDC Power Transmissions 60

References .. 65

Part II Alternating Current

4 Power Frequency Overvoltage of UHV Power Transmission Lines

Hao Zhou, Qiang Yi, Sha Li and Jingzhe Yu

4.1 Mechanisms of Power Frequency Overvoltage 70
 4.1.1 No-Load Long-Line Capacitance Effect 70
 4.1.2 Asymmetrical Short-Circuit Fault of the Line 73
 4.1.3 Power Frequency Overvoltage due to Three-Phase Load Shedding 74

4.2 Characteristics of UHV Power Frequency Overvoltage 77

4.3 Categories of UHV Power Frequency Overvoltage 78
4.3.1 Classification of UHV Power Frequency Overvoltage 78
4.3.2 Systematic Comparison of Various Power Frequency Overvoltage 82
4.4 Requirements on Restriction of UHV Power Frequency Overvoltage 92
4.5 Influence Factors of UHV Power Frequency Overvoltage .. 93
4.5.1 Line Length 93
4.5.2 Equivalent Impedance of Power Supply 94
4.5.3 Location of the Ground Fault Point 97
4.5.4 Transmission Power. 102
4.5.5 Tower Structures of the Line. 103
4.6 Restrictive Measures for UHV Power Frequency Overvoltage 104
4.6.1 Fixed High-Voltage Shunt Reactor 104
4.6.2 Controllable High-Voltage Shunt Reactor 110
4.6.3 Relay Protection Restriction Scheme 118
4.6.4 Selection of Restrictive Measures. 120
4.7 Determination of the Upper and Lower Limits of Compensation Degree of High-Voltage Shunt Reactor 121
4.7.1 Determination of the Upper Limit of Compensation Degree of High-Voltage Shunt Reactor 122
4.7.2 Determination of the Lower Limit of Compensation Degree of High-Voltage Shunt Reactor 149
References. ... 162

5 Secondary Arc Current of UHVAC System ... 163
Qiang Yi, Hao Zhou and Sha Li
5.1 Generation Mechanism of Secondary Arc Current 164
5.2 Measures to Extinguish the Secondary Arc. 165
5.2.1 Connection of Small Reactance at the Shunt Reactor’s Neutral Point for Compensation. 165
5.2.2 Extinguish of the Secondary Arc by Adding HSGS 181
5.2.3 Comparison and Discussion on the Two Methods to Restrict the Secondary Arc Current. 185
5.3 Simulation of the Secondary Arc Current and the Recovery Voltage. 188
5.3.1 Modeling. 188
5.3.2 Analysis of Effect on Inhibiting the Secondary Arc by Connecting Small Reactance at the Neutral Point of Shunt Reactors. 188
5.3.3 Analysis of the Effect of HSGS on the Inhibition of Secondary Arc. 192
References. ... 196
6 Switching Overvoltage of UHVAC Systems ... 199
Rongrong Ji, Hao Zhou and Xiujuan Chen

6.1 Switching Overvoltage Classification and Limiting Methods
of UHVAC Systems ... 200
6.1.1 Switching Overvoltage Classification
of UHVAC Systems .. 200
6.1.2 Common Methods for Limiting Switching
Overvoltage in the UHVAC System ... 203
6.1.3 New Methods for Limiting Switching Overvoltage
in the UHVAC System ... 207

6.2 Single-Phase Ground Fault Overvoltage ... 209
6.2.1 Mechanism for Generation ... 209
6.2.2 Modeling and Simulation ... 211
6.2.3 Analysis of Influence Factors ... 213
6.2.4 Limitation Measures .. 224

6.3 Closing Overvoltage ... 239
6.3.1 Mechanism for Generation ... 239
6.3.2 Modeling and Simulation ... 244
6.3.3 Analysis of Influence Factors ... 248
6.3.4 Limitation Measures .. 262
6.3.5 Research on Applicability of Closing Resistors
for EHV and UHVAC Transmission Line Circuit
Breakers ... 262

6.4 Opening Overvoltage ... 277
6.4.1 Load Shedding Overvoltage ... 278
6.4.2 Fault Clearing Overvoltage ... 285

6.5 Influence on the Electromagnetic Transient Characteristics
by Series Compensation Device .. 293
6.5.1 Composition of Series Compensation Device 293
6.5.2 Influence on the Closing Switching Overvoltage
by Series Compensation Device ... 294
6.5.3 Influence on Power Frequency Overvoltage by
Series Compensation Device ... 294
6.5.4 Influence on Secondary Arc Current by Series
Compensation Device ... 295
6.5.5 Linkage Between Series Compensation Device
and Circuit Breaker ... 296

References ... 296

7 Very Fast Transient Overvoltage of UHVAC System 299
Yang Li, Guoming Ma and Hao Zhou

7.1 Generation Mechanism and Characteristics of VFTO 300
7.2 Harm of VFTO ... 303
7.2.1 Harm of VFTO to GIS Main Insulation 304
7.2.2 Influence of VFTO on Power Transformer 304
7.2.3 Influence of VFTO on the Secondary Equipment 307
7.2.4 Cumulative Effect of VFTO 307

7.3 VFTO in 1000 kV GIS Substation Under Different Operation Conditions .. 307
 7.3.1 VFTO Generated Due to Operation with Main Transformer ... 309
 7.3.2 VFTO Generated Due to Operation with Outgoing Line ... 309
 7.3.3 VFTO Generated Due to Operation with Busbar 310

7.4 Influence Factors of VFTO 311
 7.4.1 Influence of the Residual Voltage at Load Side on the Amplitude of VFTO 312
 7.4.2 Influence of the Capacitance at Inlet of Transformer on VFTO .. 312
 7.4.3 Influence of Arc Resistance on the Amplitude of VFTO .. 313
 7.4.4 Influence of Zinc Oxide Arrester on VFTO 314

7.5 Comparison of VFTO in 500 and 1000 kV GIS Substations 314
 7.5.1 Switch Operation Sequence in Substation Under Typical Disconnector Operating Mode 315
 7.5.2 VFTO Restriction Level by Equipment in 500/1000 kV GIS Substation 318
 7.5.3 Comparison of VFTO in Typical 500 and 1000 kV GIS Substations 319
 7.5.4 Conclusions on Influences on the 500 and 1000 kV GIS Substations by VFTO 324
 7.5.5 Discussion on Whether to Install Parallel Resistance of Disconnector in the 500 and 1000 kV GIS Substations .. 325

7.6 Comparison of Characteristics of VFTO in Substation and Power Plant .. 325
 7.6.1 Comparison of Wiring Diagrams for Substation and Power Plant 325
 7.6.2 Comparison of Characteristics of VFTO in the UHV GIS Substation and the Power Plant 327
 7.6.3 Conclusions on Comparison of VFTO in UHV GIS Substation and Power Plant 332

7.7 Restriction and Protection Measures 333
 7.7.1 Rational Arrangement of Operation Sequence of Circuit Breakers and Disconnectors 333
 7.7.2 Installation of Generator Outlet Circuit Breaker in the Power Plant 334
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7.3</td>
<td>Additional Installation of Parallel Resistance on the Disconnector</td>
<td>336</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Ferrite Toroid</td>
<td>337</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Overhead Line</td>
<td>338</td>
</tr>
<tr>
<td>7.7.6</td>
<td>Other Measures</td>
<td>339</td>
</tr>
<tr>
<td>7.8</td>
<td>Quantitative Study on the Restriction of Wave Front Steepness of VFTO Invading the Main Transformer Port by the Overhead Line</td>
<td>339</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Experimental Study of the Influence on the VFTO Wave Front Steepness by the Overhead Line Length</td>
<td>340</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Simulation Analysis of the Influence on the VFTO Wave Front Steepness by Overhead Line Length</td>
<td>343</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Further Discussion on Restriction of Wave Front Steepness of VFTO Invading the Main Transformer by Means of Overhead Line in the 1000 kV Power Plant</td>
<td>350</td>
</tr>
<tr>
<td>7.9</td>
<td>Study on Transient Enclosure Voltage (TEV) of GIS in Substation and Power Plant</td>
<td>354</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Principle for Its Generation</td>
<td>355</td>
</tr>
<tr>
<td>7.9.2</td>
<td>TEV Calculation Method</td>
<td>355</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Measures to Reduce the Transient Enclosure Voltage</td>
<td>357</td>
</tr>
<tr>
<td>7.10</td>
<td>Experimental Investigation on VFTO Characteristics in the UHV GIS System in China</td>
<td>358</td>
</tr>
<tr>
<td>7.10.1</td>
<td>VFTO Characteristic Test Circuit</td>
<td>358</td>
</tr>
<tr>
<td>7.10.2</td>
<td>VFTO Generation Mechanism and Waveform Characteristics</td>
<td>360</td>
</tr>
<tr>
<td>7.10.3</td>
<td>Tests on the Effect of Operating Speed of Disconnectors on VFTO</td>
<td>362</td>
</tr>
<tr>
<td>7.10.4</td>
<td>Tests and Studies on the Effect of Branch Busbar Length on VFTO</td>
<td>368</td>
</tr>
<tr>
<td>7.10.5</td>
<td>Effect of Connection Direction of Disconnector Contacts on VFTO</td>
<td>371</td>
</tr>
<tr>
<td>7.11</td>
<td>Conclusions on VFTO Characteristics in the 500/1000 kV GIS Substation and Power Plant</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>380</td>
</tr>
<tr>
<td>8</td>
<td>Lightning Protection of UHVAC System</td>
<td>383</td>
</tr>
<tr>
<td>8.1</td>
<td>Lightning Protection of the UHVAC Lines</td>
<td>384</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Overview</td>
<td>384</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Calculation Methods for Assessment of Lightning Withstand Performance</td>
<td>390</td>
</tr>
</tbody>
</table>
8.1.3 Assessment for Lightning Withstand Performance of 1000 kV UHV Lines in China 416
8.1.4 Lightning Protection Measures for the UHVAC Lines .. 422
8.1.5 Analysis of Sideward Lightning Rod in Lightning Protection of UHVAC Line 427

8.2 Lightning Protection of the UHV Substations (Switch Stations) 435
8.2.1 Overview .. 435
8.2.2 Assessment Methods for the Lightning Withstand Performance of the UHV Substation 436
8.2.3 Lightning Intruding Overvoltage Protection of the UHV Substations 451
8.2.4 Lightning Invasion Wave Protection Measures for the UHV Substations 456

References .. 459

9 Insulation Coordination of UHV Substations ... 461
Fei Su, Hao Zhou and Yang Li
9.1 Basic Concept and Principles of Insulation Coordination .. 462
9.2 Insulation Coordination Methods for UHV Power Grid ... 463
9.3 Insulation Coordination of the UHV Substation ... 467
9.3.1 Determination of Air Clearance of the UHV Substation .. 467
9.3.2 Selection of Insulation for the UHV Equipment ... 475

References .. 484

10 Insulation Coordination of UHVAC Transmission Lines .. 485
Hao Zhou, Fei Su and Jingzhe Yu
10.1 Selection of Type and Form of UHV Insulator Strings .. 485
10.1.1 Comparison Among Three Different UHV Transmission Line Insulators 486
10.1.2 Selection of Type and Form of the UHV Transmission Line Insulator Strings 491
10.2 Methods to Determine the Number of the UHV Transmission Line Insulators 492
10.2.1 Selection of the Number of Insulators Based on Power Frequency Voltage 492
10.2.2 Selection of the Number of Insulators as Per Switching Overvoltage 508
10.2.3 Checking of the Number of Insulators as per Lightning Overvoltage Requirements 509
10.3 Determination of Air Clearances of the UHV Line ... 509
10.3.1 Determination of Air Clearance Under Power Frequency Voltage 515
10.3.2 Determination of Air Clearance Under Switching Impulse Voltage ... 520
10.3.3 Determination of Air Clearance Under Lightning Impulse Voltage ... 537
10.3.4 Selection of Line’s Air Clearance of the UHV System Under Three Types of Overvoltage 542
10.3.5 Selection of Air Clearance of the UHV Lines in Various Countries .. 543
References .. 544

11 UHVAC Electrical Equipment ... 547
Xiande Hu, Yang Li and Xiujuan Chen

11.1 UHV Transformer ... 547
11.1.1 Status Quo of the UHV Transformers in China and Other Countries .. 548
11.1.2 Characteristics and Type Selection of the UHV Transformer .. 549
11.1.3 Main Parameters of the UHV Transformers Used for the UHVAC Demonstration Project 553

11.2 UHV Shunt Reactor ... 554
11.2.1 Structural Design .. 556
11.2.2 Insulation Design .. 558
11.2.3 Cooling Mode .. 558
11.2.4 Noise Control ... 559
11.2.5 UHV Controllable Shunt Reactor ... 560

11.3 UHV Instrument Transformer ... 561
11.3.1 Status Quo of the UHV Voltage Transformers and Current Transformers in China and Other Countries .. 561
11.3.2 UHV Voltage Transformer .. 562
11.3.3 UHV Current Transformer .. 564
11.3.4 Photoelectric UHV Instrument Transformer .. 565

11.4 UHV Arrester .. 566
11.4.1 Status Quo of the UHV Arresters in China and Other Countries ... 566
11.4.2 Characteristics of the UHV Arrester .. 566
11.4.3 Main Parameters of the UHV Arresters Used in the UHVAC Demonstration Projects 568
11.4.4 UHVAC Controllable Arrester ... 568

11.5 UHV Switchgear .. 572
11.5.1 Status Quo of the UHV Switchgear in China and Other Countries .. 572
11.5.2 Characteristics of UHV Switchgear .. 573
11.6 UHV Bushing ... 576
 11.6.1 Status Quo of UHV Bushing in China and Other Countries 576
 11.6.2 Characteristics of the UHV Bushing 577
11.7 UHV Series Compensation Device ... 578
 11.7.1 Status Quo of the UHV Series Compensation Device in China and Other Countries 578
 11.7.2 Protection Mode of the UHV Series Compensation Device 579
References .. 579

12 UHV Power Frequency Electromagnetic Induction 581
Baoju Li, Jidong Shi and Yijing Su
12.1 Induced Voltage and Current of the 1000 kV Double-Circuit Line on the Same Tower 582
 12.1.1 Generation Mechanism and Four Different Induction Parameters 582
 12.1.2 Simulation Calculation of Induced Voltage and Current 585
 12.1.3 Analysis on Influence Factors of Induced Voltage and Induced Current 588
12.2 Induced Voltage and Induced Current on Overhead Ground Wires of 1000 kV AC Transmission Line 589
 12.2.1 Induced Voltage and Induced Current on Overhead Ground Wires of the UHV Single-Circuit Line 591
 12.2.2 Induced Voltage and Induced Current on Overhead Ground Wires of the UHV Double-Circuit Line on the Same Tower 593
 12.2.3 Selection of Insulation Gap and Withstand Voltage of the UHV Overhead Insulated Conductors 594
12.3 Power Frequency Electromagnetic Induction Influence of the AC Line on the UHVDC Line Erected in Parallel with It ... 595
 12.3.1 Power Frequency Electromagnetic Induction by the UHVAC Line to the UHVDC Line Erected in Parallel with It ... 596
 12.3.2 Influence Factors of the Electromagnetic Induction by the AC Line to the DC Line Erected in Parallel with It ... 599
 12.3.3 Comparative Analysis on Parallel Erection of the UHV Single-Circuit and Double-Circuit on the Same Tower of AC Line and the UHVDC Line .. 606
12.3.4 Comparative Analysis on Parallel Erection of the EHV/UHVAC Transmission Line and UHVDC Line .. 608

References .. 610

13 Electromagnetic Environment of UHVAC System 611
Xiao Zhang, Haiqing Lu, Yang Shen and Chuan He

13.1 Comparison Between Electromagnetic Environment of UHV and EHV Transmission Lines ... 612

13.2 Electromagnetic Environment of the UHVAC Transmission Line ... 614

13.2.1 Power Frequency Electric Field 614
13.2.2 Power Frequency Magnetic Field 622
13.2.3 Corona Loss ... 625
13.2.4 Radio Interference .. 629
13.2.5 Audible Noise ... 639

13.3 Optimized Phase Sequence Arrangement of the UHV Double-Circuit Transmission Line ... 645

13.3.1 Impact on Electromagnetic Environment 647
13.3.2 Impact on Natural Power .. 648
13.3.3 Impact on Unbalance Degree of Line 649
13.3.4 Impact on Lightning Withstand Performance 651
13.3.5 Impact on Induced Voltage and Current of Ground Wire ... 652
13.3.6 Recommended Optimal Phase Sequence for UHV Double-Circuit Line on the Same Tower ... 653

13.4 Safe Distance of UHV Transmission Line Over Buildings 654
13.4.1 Necessity of Research on Safe Distance 654
13.4.2 Calculation Methods and Simulation Models 655
13.4.3 Discussion on Influence Factors of Distorted Electric Field ... 658
13.4.4 Calculation of Safe Distance for UHV Transmission Line Over Building ... 666

13.5 Electromagnetic Environment of UHVAC Substation 667

13.5.1 Power Frequency Electric Field 667
13.5.2 Power Frequency Magnetic Field 668
13.5.3 Radio Interference .. 669
13.5.4 Noise .. 669

References .. 670

14 Principles and Configurations of UHVAC Protection 671
Laqin Ni, Jiyuan Li and Zhiyong Qiu

14.1 Basic Overview of UHVAC Protection 671
Part III Direct Current

15 Basic Information and Calculation of Main Parameters for UHVDC Transmission System

Yang Shen, Xilei Chen and Yuting Qiu

15.1 Operating Principle of Converter

15.1.1 6-Pulse Converter

15.1.2 12-Pulse Converter

15.1.3 Double 12-Pulse Converter Connected in Series

15.2 Operating Modes of the UHVDC Transmission System

15.2.1 Selection of Voltage Level of UHVDC Converters

15.2.2 Operating Modes of UHVDC System

15.3 Calculation of Main Circuit Parameters of UHVDC System

15.3.1 Main Connection and Operation Modes of UHVDC Transmission Project

15.3.2 Rated Operating Parameters of DC System

15.3.3 Rated Operating Parameters of AC System

15.3.4 Parameters of DC Line

15.3.5 Equipment Parameters

15.3.6 Operating Parameters of DC System

References

16 Switching Overvoltage of UHVDC System

Dongju Wang, Hao Zhou and Jiyuan Li

16.1 Classification and Characteristics of Switching Overvoltage in UHVDC System
16.1.1 Classification of Switching Overvoltage 768
16.1.2 Characteristics of UHVDC Switching Overvoltage .. 769
16.1.3 Type of Faults Resulting in Switching Overvoltage .. 771
16.2 Simulation Model of DC System 772
16.2.1 Model for Main Circuit of DC System 772
16.2.2 Model of DC Control System 773
16.2.3 Scheme for Arrangement of Arresters in Converter Station 777
16.3 Switching Overvoltage at AC Side 778
16.3.1 Three-Phase Ground Fault and Clearing 780
16.3.2 Loss of AC Power Supply at the Inverter Side 782
16.3.3 Internal Overvoltage of AC Filters 786
16.4 Switching Overvoltage in Valve Hall 793
16.4.1 Switching Overvoltage on Valve Arrester V11/V1 795
16.4.2 Switching Overvoltage on Valve Arrester V12/V2 .. 801
16.4.3 Switching Overvoltage on Valve Arrester V3 804
16.4.4 Switching Overvoltage on DC Converter Busbar Arrester 808
16.5 Switching Overvoltage in DC Field 811
16.5.1 Overvoltage on DC Pole Line 811
16.5.2 Overvoltage on Neutral Busbar 818
16.5.3 Internal Overvoltage of DC Filter 830
16.6 Monopolar Ground Fault Overvoltage of DC Line 836
16.6.1 Conditions for Simulation 837
16.6.2 Simulation Calculation Results 840
16.6.3 Analysis of Overvoltage Mechanism 847
16.6.4 Overvoltage Control and Protection Measures 854
References ... 855

17 Lightning Overvoltage of UHVDC Transmission System 857
Pan Dai, Hao Zhou and Bincai Zhao
17.1 Lightning Protection of UHVDC Transmission Line 858
17.1.1 Main Differences in Lightning Protection of AC and DC Lines 858
17.1.2 Characteristics of Lightning Withstand Performance for UHVDC Line 861
17.1.3 Analysis of Lightning Protection for the ±800 kV UHVDC Transmission Line ... 862
17.2 Lightning Protection of UHVDC Converter Station 866
17.2.1 Protection Characteristics of Lightning Invasion Wave for DC Converter Station 866
17.2.2 Calculation Method for Lightning Intruding Overvoltage in DC Converter Station 868
17.2.3 Analysis for Overvoltage Protection of Lightning Invasion Wave in ±800 kV DC Converter Station 874

References ... 886

18 Insulation Coordination of UHVDC Converter Station 887
Xilei Chen, Hao Zhou and Xu Deng
18.1 Basic Procedures for Determining the Insulation Level of Equipment 888
18.2 Overview of UHVDC Arrester 889
18.2.1 Characteristics of UHVDC Arrester 889
18.2.2 Definition of Basic Parameters of UHVDC Arrester 890
18.3 Configuration of Arresters in Converter Station 891
18.3.1 Basic Principles for Configuration of Arresters 891
18.3.2 Configuration Scheme of Arresters in Converter Station ... 892
18.3.3 Characteristics for Configuration of Arresters in UHVDC Converter Station 897
18.4 Selection of Parameters for UHVDC Arresters 898
18.4.1 Basic Principles for Selection of Parameters for Arresters .. 898
18.4.2 Arresters at AC Side .. 899
18.4.3 Arresters at DC Side .. 901
18.4.4 Difference in Parameters of Arresters for Converter Stations at Both Terminals 911
18.5 Determination for Insulation Level of Converter Station’s Equipment 913
18.5.1 Method for Insulation Coordination of Converter Station’s Equipment 913
18.5.2 Insulation Margin ... 913
18.5.3 Protection Level and Insulation Level 915
18.6 Scheme for Separate Arrangement of Smoothing Reactors ... 916
18.6.1 Economic and Technical Advantages of Separate Arrangement of Smoothing Reactors 918
18.6.2 Necessity for Adoption of Separate Arrangement of Smoothing Reactors in UHVDC System 923
18.7 Minimum Air Clearance in Converter Station 924
18.7.1 Air Clearance Discharge Characteristic Test of Pole Busbar in Converter Station 927
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.7.2</td>
<td>Equation Method for Design of Minimum Air Clearance</td>
<td>930</td>
</tr>
<tr>
<td>18.7.3</td>
<td>Non-standard Atmospheric Correction Method</td>
<td>933</td>
</tr>
<tr>
<td>18.8</td>
<td>Polluted External Insulation of Converter Station</td>
<td>942</td>
</tr>
<tr>
<td>18.8.1</td>
<td>Operation Experience of Polluted External Insulation of Chinese ±500 kV Converter Stations</td>
<td>942</td>
</tr>
<tr>
<td>18.8.2</td>
<td>Selection of Post Insulators in Converter Stations</td>
<td>946</td>
</tr>
<tr>
<td>18.8.3</td>
<td>External Insulation Design of Post Insulators in Converter Station</td>
<td>947</td>
</tr>
<tr>
<td>18.8.4</td>
<td>Creepage Distance of DC Wall Bushing in Converter Station</td>
<td>954</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>956</td>
</tr>
</tbody>
</table>

19 Insulation Coordination of UHVDC Transmission Line 959

Jidong Shi, Hao Zhou and Xu Deng

19.1 Selection of Type and Number of Insulators for UHVDC Transmission Line .. 960
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.1</td>
<td>Selection of Material and Umbrella Type of Insulators ..</td>
<td>960</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Type Selection of Insulator Strings</td>
<td>963</td>
</tr>
<tr>
<td>19.1.3</td>
<td>Determination of the Insulators’ Number</td>
<td>964</td>
</tr>
<tr>
<td>19.1.4</td>
<td>Selection of Insulators in Icing Area</td>
<td>974</td>
</tr>
<tr>
<td>19.2</td>
<td>Determination of Air Clearance for UHVDC Transmission Line</td>
<td>978</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Determination of Air Clearance Under DC Voltage</td>
<td>983</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Determination of Air Clearance Under Switching Impulse</td>
<td>984</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Determination of Air Clearance Under Lightning Impulse</td>
<td>985</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Code-Recommended Value and Engineering-Applied Value for Air Clearance of UHVDC Line</td>
<td>986</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>987</td>
</tr>
</tbody>
</table>

20 Overvoltage Characteristics and Insulation Coordination of UHVDC Converter Valves 989

Kunpeng Zha, Xiaoguang Wei and Jie Liu

20.1 Analysis on Overvoltage Characteristics of Converter Valves Under the Effect of Impulse Voltage 990
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.1</td>
<td>Extraction of Parasitic Capacitance of Converter Valve System</td>
<td>990</td>
</tr>
<tr>
<td>20.1.2</td>
<td>Analysis Model for Impulse Transient of Converter Valve System</td>
<td>994</td>
</tr>
<tr>
<td>20.1.3</td>
<td>Characteristics of Impulse Transient Overvoltage of Converter Valve System</td>
<td>994</td>
</tr>
<tr>
<td>20.2</td>
<td>Analysis on Overvoltage Characteristics of Converter Valve Under Operating Condition</td>
<td>996</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Analysis on Turn-off Transient Overvoltage of Converter Valve</td>
<td>998</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Physical Simulation Method</td>
<td>1000</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Classical Method</td>
<td>1001</td>
</tr>
<tr>
<td>20.2.4</td>
<td>Time-Domain Circuit Method</td>
<td>1002</td>
</tr>
<tr>
<td>20.3</td>
<td>Overvoltage Protection of DC Transmission Converter Valve and Its Design</td>
<td>1004</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Strategy Selection for Insulation Coordination of Converter Valves</td>
<td>1005</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Overvoltage Protection Function of Gate Electronic Circuit</td>
<td>1005</td>
</tr>
<tr>
<td>20.4</td>
<td>Study on Insulation Coordination for DC Transmission Converter Valves</td>
<td>1007</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Calculation Method for Creepage Distance</td>
<td>1007</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Calculation Method for Air Clearance</td>
<td>1008</td>
</tr>
</tbody>
</table>

References | 1008 |
21.4.4 Manufacturing Level of UHV Smoothing Reactor .. 1030

21.5 UHVAC and DC Filters ... 1031
21.5.1 UHVAC Filter .. 1031
21.5.2 UHVDC Filter .. 1033
21.5.3 Tests of UHVAC/DC Filters 1036
21.5.4 Manufacturing Level of UHVAC/UHVDC Filters 1036

21.6 UHVDC Arrester ... 1037
21.6.1 Type of UHVDC Arrester 1037
21.6.2 Characteristics of UHVDC Arrester 1038
21.6.3 Tests of UHVDC Arrester 1041
21.6.4 Manufacturing Level of UHVDC Arrester 1042

21.7 UHV Bushing ... 1042
21.7.1 Structure of UHV Bushing 1043
21.7.2 Characteristics of UHV Bushing 1045
21.7.3 Tests of UHV Bushing 1047
21.7.4 Manufacturing Level of UHV Bushing 1047

21.8 UHVDC Switchgear ... 1047
21.8.1 UHVDC Transfer Switch 1048
21.8.2 UHVDC Disconnector and Grounding Switch 1052
21.8.3 UHVDC Bypass Switch 1052
21.8.4 Tests of UHVDC Switchgear 1054

21.9 UHVDC Measuring Equipment 1054
21.9.1 UHVDC Voltage Measuring Equipment 1054
21.9.2 UHVDC Current Measuring Equipment 1055

References ... 1056

22 Electromagnetic Environment of UHVDC System 1059
Yiru Wan, Xiao Zhang and Jiyuan Li

22.1 Electromagnetic Environmental Issues of UHVDC Transmission Line 1060
22.1.1 Electric Field Intensity and Ion Flow Density 1061
22.1.2 DC Magnetic Field ... 1064
22.1.3 Surface Electric Field Intensity of Conductor 1065
22.1.4 Radio Interference ... 1074
22.1.5 Audible Noise .. 1077
22.1.6 Corona Loss .. 1081

22.2 Electromagnetic Environmental Assessment of UHVDC Transmission Lines 1084
22.2.1 Electric Field Intensity and Ion Flow Density 1085
22.2.2 Magnetic Induction Intensity 1087
22.2.3 Radio Interference .. 1087
22.2.4 Audible Noise .. 1089
22.3 Analysis on Electromagnetic Environmental Impact Factors of UHVDC Transmission Line

22.3.1 Influence of the Pole Conductor Height Above the Ground 1090
22.3.2 Influence of the Interpolar Distance 1090
22.3.3 Influence of Bundling Spacing of Pole Conductors 1092
22.3.4 Influence of the Number of Bundled Sub-conductors 1092
22.3.5 Influence of Cross-Sectional Area of Pole Conductors 1094
22.3.6 Influence of Altitude .. 1096

22.4 Measures for Improving the Electromagnetic Environment of DC Transmission Lines 1096

22.5 Electromagnetic Environment of UHVDC Converter Station 1098

22.5.1 Noise Sources of Converter Station ... 1100
22.5.2 Noise Control Indicators of Converter Station 1103
22.5.3 Noise Control Measures of Converter Station 1103

References ... 1106

23 Comparison of Overvoltage and Insulation Coordination of ±800 kV and ±1100 kV UHVDC Systems 1107
Wenqian Qiu, Hao Zhou and Dongju Wang

23.1 System Parameters ... 1108
23.2 Configuration and Parameters of Arresters in Converter Station 1109

23.2.1 Configuration of Arresters in Converter Station 1109
23.2.2 Basic Parameters of Arresters ... 1111

23.3 Analysis and Contrast of Overvoltage in Converter Station 1111

23.3.1 Overvoltage at AC Side ... 1111
23.3.2 Overvoltage in Valve Hall .. 1114
23.3.3 Overvoltage at DC Line Side ... 1121
23.3.4 Neutral Busbar Overvoltage .. 1122

23.4 Insulation Coordination of ±1100 kV UHVDC Power Transmission System 1125

23.4.1 Configuration Scheme for Arresters in Converter Station 1125

23.4.2 Influence of Short Circuit Impedance on Insulation Level of Equipment ... 1128
23.4.3 Insulation Level of Equipment .. 1129

23.5 Discussion on Converter Combination for ±1100 kV UHVDC System 1132
23.5.1 Discussion on Combination of ±1100 kV Converters .. 1132
23.5.2 Selection of Combination Scheme for Converters of ±1100 kV UHVDC System 1137
References .. 1138

24 Principles and Configurations of UHVDC Protection .. 1139
Taoxi Zhu
24.1 Overview of UHVDC Protection ... 1139
24.1.1 Basic Requirements of UHVDC Protection ... 1139
24.1.2 Action Result of UHVDC Protection .. 1140
24.1.3 Zone of UHVDC Protection ... 1143
24.1.4 Measuring Points of UHVDC Protection ... 1144
24.2 Principles and Configurations for UHVDC Protection 1147
24.2.1 Protection of Converter Area ... 1147
24.2.2 Protection of Polar Area ... 1163
24.2.3 Bipolar Area Protection .. 1170
24.2.4 Protection of DC Line Area ... 1177
24.2.5 Protection of DC Filter Area ... 1182
24.2.6 Protection of DC Switch .. 1188
24.2.7 Coordination Relation of DC Protection ... 1192
24.3 Difference Between UHVDC Protection and Conventional DC Protection 1195
24.3.1 Configuration of Protective Devices .. 1195
24.3.2 Protection Configuration and Principle ... 1195
References .. 1197

Part IV Design of UHV Power System

25 Design of Ultra-High-Voltage Alternating Current (UHVAC) Substation 1201
Feng Qian, Wenqian Qiu, Jian Ding, Chunxiu An, Hongbo Liu, Jianhua Chen and Yang Shen
25.1 Design Depth Requirements and Main Standards ... 1202
25.1.1 Design Depth Requirements ... 1202
25.1.2 Main Standards .. 1202
25.1.3 Key and Difficult Issues of Design ... 1203
25.2 Site Selection and General Layout ... 1203
25.2.1 Site Selection ... 1203
25.2.2 General Planning and Layout ... 1205
25.3 Main Electrical Connection ... 1206
25.4 Overvoltage Protection ... 1207
25.5 Minimum Air Clearance ... 1210
25.6 Insulation Level of Electrical Equipment .. 1210
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.7</td>
<td>Selection of Main Electrical Equipment</td>
<td>1212</td>
</tr>
<tr>
<td>25.7.1</td>
<td>Electrical Calculation</td>
<td>1212</td>
</tr>
<tr>
<td>25.7.2</td>
<td>Main Transformer</td>
<td>1212</td>
</tr>
<tr>
<td>25.7.3</td>
<td>Switchgear</td>
<td>1215</td>
</tr>
<tr>
<td>25.7.4</td>
<td>Voltage Transformer</td>
<td>1215</td>
</tr>
<tr>
<td>25.7.5</td>
<td>UHV Shunt Reactor</td>
<td>1216</td>
</tr>
<tr>
<td>25.8</td>
<td>UHV Distribution Equipment</td>
<td>1217</td>
</tr>
<tr>
<td>25.8.1</td>
<td>Classification and Design Principle of UHV Distribution Equipment</td>
<td>1217</td>
</tr>
<tr>
<td>25.8.2</td>
<td>Minimum Safety Clearance Values A, B, C, and D</td>
<td>1225</td>
</tr>
<tr>
<td>25.8.3</td>
<td>Main Features of UHV Distribution Equipment</td>
<td>1227</td>
</tr>
<tr>
<td>25.8.4</td>
<td>Size Determination of 1000 kV Distribution Equipment</td>
<td>1227</td>
</tr>
<tr>
<td>25.9</td>
<td>Connection and Layout of Shunt Compensation Device</td>
<td>1230</td>
</tr>
<tr>
<td>25.9.1</td>
<td>Classification of Shunt Compensation Devices</td>
<td>1232</td>
</tr>
<tr>
<td>25.9.2</td>
<td>Grouping Capacity of Shunt Compensation Devices</td>
<td>1232</td>
</tr>
<tr>
<td>25.9.3</td>
<td>Shunt Compensation Devices</td>
<td>1234</td>
</tr>
<tr>
<td>25.9.4</td>
<td>Layout of Shunt Compensation Devices</td>
<td>1235</td>
</tr>
<tr>
<td>25.10</td>
<td>Connection and Layout of Station-Service Power</td>
<td>1236</td>
</tr>
<tr>
<td>25.10.1</td>
<td>Main Design Principles</td>
<td>1236</td>
</tr>
<tr>
<td>25.10.2</td>
<td>Connection of Station-Service Power</td>
<td>1236</td>
</tr>
<tr>
<td>25.10.3</td>
<td>Station-Service Equipment and Layout</td>
<td>1236</td>
</tr>
<tr>
<td>25.10.4</td>
<td>Lighting and Maintenance</td>
<td>1237</td>
</tr>
<tr>
<td>25.11</td>
<td>General Plan and Vertical Layout</td>
<td>1237</td>
</tr>
<tr>
<td>25.11.1</td>
<td>General Layout Plan</td>
<td>1237</td>
</tr>
<tr>
<td>25.11.2</td>
<td>Vertical Layout</td>
<td>1240</td>
</tr>
<tr>
<td>25.11.3</td>
<td>Roads of Substation</td>
<td>1241</td>
</tr>
<tr>
<td>25.12</td>
<td>Main Buildings (Structures)</td>
<td>1241</td>
</tr>
<tr>
<td>25.12.1</td>
<td>Buildings of Substation</td>
<td>1241</td>
</tr>
<tr>
<td>25.12.2</td>
<td>UHV Substation Framework</td>
<td>1245</td>
</tr>
<tr>
<td>25.12.3</td>
<td>UHV GIS Equipment Foundation</td>
<td>1255</td>
</tr>
<tr>
<td>25.13</td>
<td>Secondary Electrical Connection</td>
<td>1258</td>
</tr>
<tr>
<td>25.13.1</td>
<td>Main Design Principles</td>
<td>1258</td>
</tr>
<tr>
<td>25.13.2</td>
<td>Computer-Based Monitoring System</td>
<td>1259</td>
</tr>
<tr>
<td>25.13.3</td>
<td>Element Protection</td>
<td>1261</td>
</tr>
<tr>
<td>25.13.4</td>
<td>System Protection</td>
<td>1263</td>
</tr>
<tr>
<td>25.13.5</td>
<td>System Communication</td>
<td>1267</td>
</tr>
<tr>
<td>25.13.6</td>
<td>Dispatching Automation System</td>
<td>1268</td>
</tr>
<tr>
<td>25.13.7</td>
<td>Electric Energy Metering and Billing System</td>
<td>1268</td>
</tr>
</tbody>
</table>
26 Design of UHVDC Converter Station .. 1273
Zhichao Zhou, Xiaofei Ding, Wenqian Qiu, Jianhua Chen,
Chunxiu An and Sheng Liu

26.1 Site Selection and General Layout 1274
 26.1.1 General Requirements .. 1274
 26.1.2 General Layout ... 1274
 26.1.3 Heavy-Duty Equipment Transport 1275
 26.1.4 Water Supply to Converter Station 1276
 26.1.5 Environmental Impact 1277

26.2 Main Electrical Connection .. 1278
 26.2.1 Connection of Converter Unit 1278
 26.2.2 Connection of DC Switchyard 1278
 26.2.3 AC Switchyard Connection 1285
 26.2.4 AC Filter Connection 1285

26.3 Overvoltage Protection of Converter Station 1286

26.4 Insulation Levels of Equipment 1287

26.5 Minimum Air Clearance Distance 1291

26.6 Selection of Main Electrical Equipment 1296
 26.6.1 Calculation of Short-Circuit Current 1296
 26.6.2 Converter Valve .. 1303
 26.6.3 Converter Transformer 1306
 26.6.4 Smoothing Reactor ... 1308
 26.6.5 AC Filter and Shunt Capacitor 1309
 26.6.6 DC Filter ... 1310
 26.6.7 Other DC Equipment 1310
 26.6.8 Wall Bushing .. 1314

26.7 Vertical Layout Design .. 1315
 26.7.1 Main Tasks and Design Principles 1315
 26.7.2 Vertical Layout with Slight Slope and Slope
 Selection ... 1316
 26.7.3 Vertical Layout with Terrace 1316
 26.7.4 Vertical Layout of Buildings and Structures 1317

26.8 Power Distribution Device of UHVDC Converter Station 1317
 26.8.1 Converter Area Layout 1318
 26.8.2 DC Switchyard Arrangement 1329
 26.8.3 Layout of AC Filter Yard 1332
 26.8.4 Layout of AC Power Distribution Devices 1340
 26.8.5 Summary of Electrical General Layout 1340

26.9 Buildings in Converter Station 1341
 26.9.1 Main Buildings and Structures 1341
26.9.2 Valve Hall .. 1342
26.9.3 Control Building and Auxiliary Equipment
 Building ... 1343
26.9.4 Indoor DC Yard 1344
26.9.5 GIS House 1344
26.9.6 Other Buildings 1344
26.9.7 Type of Structure 1344
26.10 Connection and Layout of Substation-Service Power 1345

26.11 Secondary System 1346
26.11.1 Control and Protection of AC and DC Systems 1346
26.11.2 AC Protection System and Safety and Stabilizing
 Devices .. 1356
26.11.3 Dispatching Automation 1357
26.11.4 System Communication 1359

References ... 1360

27 Design of Ultra-High-Voltage Alternating Current (UHVAC)
 Power Transmission Lines 1361
 Jiamiao Chen, Wenqian Qiu, Feng Pan and Gang Song

27.1 Design Basis 1363
27.2 Line Routes .. 1363
27.3 Design Meteorological Conditions 1364
 27.3.1 Principles of Selection 1364
 27.3.2 Basic Wind Speed 1364
 27.3.3 Design Icing 1366

27.4 Selection of Conductor and Ground Wire of AC Lines 1367
 27.4.1 Main Parameters for Conductor Selection 1368
 27.4.2 Conductor Cross-Section and Bundled
 Configuration 1372
 27.4.3 Phase-Sequence Arrangement of the Double-
 Circuit Conductors 1374
 27.4.4 Application of Expanded Conductors 1376
 27.4.5 Selection of Ground Wire and OPGW Optical
 Cable ... 1379

27.5 Insulation Coordination Design of AC Transmission Line 1382
 27.5.1 Type Selection of Insulators 1383
 27.5.2 Selection of the Number of Pieces of Insulator
 Strings ... 1387
 27.5.3 Air Clearance at Tower Head 1390
 27.5.4 Lightning Protection and Grounding Design 1392

27.6 Design of AC Line Insulator Strings and Fittings 1394
 27.6.1 Basic Principles 1394
 27.6.2 Safety Factor 1395
 27.6.3 Suspension Insulator String of Conductor 1396
27.6.4 Strain Insulator String of Conductor 1398
27.6.5 Jumper Fitting String of Strain Tower 1399
27.6.6 Main Fittings 1402
27.7 Conductor Transposition Design for AC Line 1406
 27.7.1 Main Content of Conductor Transposition Design 1407
 27.7.2 Determination of Unbalance Factor Limits 1407
 27.7.3 Calculation of Unbalance Factor for Power Transmission Line 1408
 27.7.4 Selection of Transposition Ways 1410
27.8 Tower Design for UHV Transmission Line 1412
 27.8.1 Types and Characteristics of Tower 1412
 27.8.2 Tower Loads and Combinations 1417
 27.8.3 Materials of Tower 1418
 27.8.4 Optimization Design of Tower Structure 1421
 27.8.5 Issues to Be Noticed in the Design of Tower Structure 1425
References .. 1427

28 Design of UHVDC Transmission Lines 1429
 Jiamiao Chen, Wenqian Qiu, Jia Tao, Yong Guo and Jianfei Chen
 28.1 Selection of Conductors for DC Line 1430
 28.1.1 Main Principles for Conductor Selection 1430
 28.1.2 Conductor Section and Bundle Configuration 1431
 28.1.3 Main Electrical Properties of Conductor 1433
 28.1.4 Selection of Ground Wire Types 1440
 28.2 Insulation Coordination Design of DC Line 1440
 28.2.1 Pollution Investigation and Polluted Area Classification 1441
 28.2.2 Insulator Types 1442
 28.2.3 Selection of the Number of Insulators for the Insulator Strings 1445
 28.2.4 Air Clearance of Tower Head 1452
 28.3 Design of Insulator Strings and Fittings of DC Line ... 1453
 28.3.1 Insulator String of Conductor 1453
 28.3.2 Selection of Main Fittings 1457
 28.4 Clearance of Conductor to Ground for DC Line 1459
 28.4.1 Minimum Clearance of Conductor to Ground 1459
 28.4.2 Relation Between Clearance of Conductor to Ground and Environmental Climate 1460
 28.5 Tower Design of DC Line 1461
 28.5.1 Tower Types of DC Line 1461
 28.5.2 Structural Characteristics of Towers for DC Line 1463
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5.3</td>
<td>Tower Load and Combination</td>
<td>1465</td>
</tr>
<tr>
<td>28.5.4</td>
<td>Tower Materials of DC Line</td>
<td>1465</td>
</tr>
<tr>
<td>28.5.5</td>
<td>Issues to Be Noticed in Tower Design</td>
<td>1467</td>
</tr>
<tr>
<td>28.6</td>
<td>Foundation Design for DC Line</td>
<td>1469</td>
</tr>
<tr>
<td>28.6.1</td>
<td>Common Foundation Types</td>
<td>1469</td>
</tr>
<tr>
<td>28.6.2</td>
<td>Issues to Be Noticed in Foundation Design</td>
<td>1470</td>
</tr>
<tr>
<td>28.6.3</td>
<td>Treatment Measures for Foundations Under Special Geological Conditions</td>
<td>1473</td>
</tr>
<tr>
<td>28.6.4</td>
<td>Mechanical Construction of Foundations</td>
<td>1474</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>1475</td>
</tr>
</tbody>
</table>
Ultra-high Voltage AC/DC Power Transmission
Zhou, H.; Qiu, W.; Sun, K.; Chen, J.; Deng, X.; Qian, F.;
Wang, D.; Bincai, Z.; Li, J.; Li, S.; Qiu, Y.; Yu, J. (Eds.)
2018, XXXIV, 1475 p. 641 illus. In 2 volumes, not
available separately., Hardcover
ISBN: 978-3-662-54573-7