Preface

Mark Twain in *Huckleberry Finn*

Suspected but undetected only a bit more than a century ago, the matter between the stars in our Galaxy and others is a vast medium of extremes. Hendrik van de Hulst once described the interstellar medium as a place where an atom could sit for a million years and still act spontaneously. It is fuel for the birth of stars and the disposal site of their nucleosynthesis, where lengths are measured in parsecs or kiloparsecs yet whose energetics are governed on the scale of solar systems. Its kinetics are nearly collisionless yet its dynamical state is the result of large-scale ordering as if a fluid. Its density varies by five to six orders of magnitude in the diffuse phase and even more in the densest clouds. Its velocities range from diffusion to hypersonic, and its temperatures range from a few K to 10^7 K, from ices to plasmas.

During the last half-century, the interstellar medium has been intensively studied and its complexity increasingly appreciated. The launching of the *Planck* and *Herschel* orbiting observatories has lent a new, multi-wavelength approach to studies of the interstellar medium, and the astounding databases that are now available from radio waves to gamma-rays will keep astrophysicists busy for decades to come.

Most of the recent work on the interstellar medium has focused on star and planetary formation. Necessarily, these studies have concentrated on the denser parts of molecular clouds and cores where these objects form. However, both of us have spent a good portion of our careers thinking about the more diffuse molecular and atomic gas, where star formation plays no role. In light of this, we decided to share some of our thoughts and views on this somewhat neglected component of the Galaxy.

Our goal in this book is to present a broad view of the diffuse interstellar medium, with emphasis on diffuse and translucent molecular gas. The book is not intended to be a textbook or a lengthy review; rather, it’s our point of view of the diffuse interstellar medium as our experiences led us to see it. For this reason, for example, we have chosen to not discuss the physics of shocks in the diffuse medium. Although they play an important role in the dynamics and energetics of the ISM, we
concentrate on the neutral and molecular gas, for which they are less important. This book is intended for graduate students who are entering the field and postdocs who are switching fields. It is meant to be accessible to someone who does not necessarily have the astrophysical background. However, some prior knowledge of radiative transfer and the theory of turbulence (Chaps. 2 and 11) is required as our treatments of these topics presuppose some basic familiarity with them.

The seeds for this book were planted nearly 20 years ago from conversations between one of us (LM) and Dap Hartmann and Eugene de Geus. The original plan was to produce a book on high-latitude molecular clouds. For a number of reasons, that work was stillborn. The idea was resurrected about 5 years ago when the two of us decided, with encouragement from Butler Burton, to turn some of our research on high-latitude translucent clouds into a more complete treatment than was possible in a review article. Given the work we have done over the last 15 years (much of which with our colleague, Ted LaRosa), we decided to use the high-latitude molecular clouds as illustrations of many of the concepts we wished to discuss. For most of these objects, gravity does not dominate; instead, they show flows and are perhaps the best objects to study the original turbulence that gave rise to them, undisturbed by star formation and its effects.

We have learned so much from our colleagues and students over the years. To thank all of them would be impossible. We limit ourselves to mentioning those who interacted with us particularly on the topics of this book: Mike A’Hearn, Gianni Aiello, Joao Alves, Tom Bania, Giuseppe Bertin, Claude Bertout, John Black, Leo Blitz, Jan Brand, J.-P. Caillault, Bruce Elmegreen, Nye Evans, Edith Falgarone, Steve Federman, Daniele Galli, Riccardo Giovanelli, Dap Hartmann, Thomas Hartquist, Mike Hauser, Carl Heiles, Mark Heyer, Anthony Jones, Namir Kassim, Elizabeth Lada, Alex Lazarian, Mordecai-Mark Mac Low, Lee Mundy, Joe Onello, Jan Palous, Francesco Pegoraro, John Raymond, Tim Robishaw, Göran Sandell, John Scalo, Bob Silverberg, Mattia Sormani, Steve Stahler, Snezana Stanimirovic, Pat Thaddeus, Barry Turner, Enrique Vasquez-Semadeni, Fran Verter, Malcolm Walmsley, Jan Wouterloot, and, our dear friend and colleague, Ted LaRosa.

We thank our students who worked on the interstellar medium: Ivan de Gennaro Aquino, Matteo Cantiello, Alessandro Cilla, Francesco Costagliola, Fabio del Sordo, Lapo Fanciullo, Marco Monaci, Jeremy Gordon, Meredith McCarthy, Samantha Blair, Ray Chastain, Elizabeth Wennerstrom, David Cotten, Emmanuel Donate, Thom Hearty, and Allison Smith.

We thank Jan Brand, Tara Cotten, Renata Cumbee, Tom Dame, Lapo Fanciullo, Jeffrey Gritton, Jinhee Lee, Tim Robishaw, Robin Shelton, Allison Smith, Kyle Walker, and Ziwei Zhang for a critical reading with comments and suggestions for several chapters of the manuscript.

A special thanks to the late Lars E.B. Johansson, Magnus Thomasson, Henrik Olofsson and the staff of the Onsala Observatory, and Lucy Ziurys and the staff of the Arizona Radio Observatory for their generosity in allocating telescope time and for help with observations. We also acknowledge support from the EU-funded RadioNet Transnational Access program, and from the NASA Guest Observer programs for IUE and HST.
We have made use of data from the Sloan Digital Sky Survey: Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, the University of Basel, the University of Cambridge, Case Western Reserve University, the University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, the University of Pittsburgh, the University of Portsmouth, Princeton University, the US Naval Observatory, and the University of Washington.

Some of the data presented in this work were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

This publication makes use of data products from the Wide-Field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We also made use of NASA’s Astrophysics Data System.

SkyView has been developed with generous support from the NASA AISR and ADP programs (P.I. Thomas A. McGlynn) under the auspices of the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA/GSFC Astrophysics Science Division.

And let’s not forget our best friends past and present, the dogs: Lupo, Barkum, Thanatos, Laika, Astro, Buddy, Ella, Jerry, Kismet, Beau, Tony, Cody, Quillo, and Ricky.

Athens, GA, USA
Pisa, Italy
September 2016

Loris Magnani
Steven N. Shore
A Dirty Window
Diffuse and Translucent Molecular Gas in the Interstellar Medium
Magnani, L.; Shore, S.N.
2017, XIX, 306 p. 76 illus., 28 illus. in color., Hardcover
ISBN: 978-3-662-54348-1