Contents

1 General Introduction .. 1
 1.1 Introduction of the Cold Rolling Precision Forming Technology .. 1
 1.2 Present Situation of Shaft Part Manufacturing Technology 3
 1.2.1 Cutting of the Spline Shafts 4
 1.2.2 Plastic Forming of Spline Shafts 6
 1.2.3 Manufacturing Methods of Thread Components 13
 1.3 Research Progress on the Cold Rolling Precision Forming Technology of Shaft Parts 16
 1.3.1 The State of the Art on the Manufacturing of Spline Shafts 16
 1.3.2 Theoretical Researches on the Cold Rolling Forming of Spline Shafts 19
 1.3.3 Surface Modification of the Cold Rolling Forming Spline Shafts 20
 1.3.4 Development Status on Cold Rolling Forming of Threads 21
 1.4 Development Trends on Cold Rolling Precision Forming Technology of Shaft Parts 23
 References .. 25

2 Principle and Mechanical Analysis on the Cold Rolling Precision Forming of Spline 29
 2.1 Principle and Process on the Cold Rolling Precision Forming of Spline Shafts 29
 2.2 Mechanical Analysis .. 31
 2.3 Analysis on the Cold Rolling Forming Process of the Spline Tooth 32
 2.3.1 Indexing and Biting Conditions 32
2.3.2 Rotating Conditions 32
2.3.3 Geometrical Indexing Conditions 35
2.4 Double-Flank Non-backlash Meshing 37
 2.4.1 Contact Area in the Forming Process 37
 2.4.2 Position of the Contact Points 40
2.5 Sliding of the Contact Point 44
 2.5.1 Sliding Motion of the Contact Point
 on the Active Tooth Flank 44
 2.5.2 Sliding Motion of the Contact Point
 on the Driven Tooth Flank 46
 2.5.3 Metal Flow on the Tooth Surface of the Workpiece ... 47
2.6 Mechanical Analysis on the Cold Rolling Precision
Forming of Spline .. 48
 2.6.1 Basic Assumption of the Stress Analysis 48
 2.6.2 Fundamental Plastic Forming Theory of Stress
 Analysis .. 50
 2.6.3 Slip-Line Field and Stress Analysis in the Initial
 Rolling Stage 55
 2.6.4 Slip-Line Field and Stress Analysis in the Stable
 Rolling Stage 57
2.7 Average Pressure on the Contact Surface During
the Forming Process, 60
References .. 63

3 Process Parameters in the Cold Rolling Forming of Spline 65
3.1 Contact Area in the Cold Rolling Forming of Spline Shafts ... 65
 3.1.1 Calculation Model 66
 3.1.2 Tooth Profile Equation of the Roller and the
 Workpiece in the Forming Process 67
 3.1.3 Contact Boundary Conditions 73
 3.1.4 Calculation of the Contact Area 74
 3.1.5 Main Algorithm of the Subroutine 76
3.2 Rolling Force and Rolling Moment 85
 3.2.1 Theoretical Calculation of the Rolling Force
 and Rolling Moment 85
 3.2.2 Analysis of the Rolling Force and Rolling
 Moment in the Forming Process 87
3.3 Calculation of the Cold Rolling Workpiece Billet Diameter ... 91
 3.3.1 Theoretical Calculation Formulas 91
 3.3.2 Cross-Sectional Area of a Single Tooth Above
 the Dedendum Circle 91
 3.3.3 Radius of the Dedendum Transition Arc 94
4 Numerical Simulation on the Cold Rolling Forming of Spline

4.1 Establishment of the Finite Element Model and Boundary Conditions

4.1.1 Finite Element Model

4.1.2 Simulation Parameters and Constrain Conditions

4.2 Numerical Simulation of the Cold Rolling Forming Process

4.2.1 Plastic Deformation Zone

4.2.2 Bulge at the End of the Shafts

4.2.3 Stress and Strain Fields

4.3 Comparison Between the Theoretical Analysis and Numerical Simulation Results

4.3.1 Unit Pressure on the Contact Area

4.3.2 Rolling Force in the Rolling Forming Process

References

5 Metal Flow Rules and Forming Quality of Cold Rolling Forming Spline Shaft

5.1 Metal Flow Rules of the Tooth in Cold Rolling Precision Forming of Spline Shafts

5.1.1 Workpiece Billet and the Forming Parameters

5.1.2 Metal Flow Analysis of the Tooth Profile

5.2 Precision of the Spline Cold Rolling Forming Process

5.3 Surface Quality of the Cold Rolling Forming Spline Shaft Parts

5.3.1 Surface Roughness of the Formed Components

5.3.2 Tooth Surface Hardness of the Cold Rolling Forming Components

5.3.3 Microstructure of the Cold Rolling Forming Spline Tooth

5.3.4 Tooth Surface Strengthening Mechanism of the Cold Rolling Precision Forming Spline Shaft

5.4 Forming Error and Defects of the Cold Rolling Forming Spline Shaft

5.4.1 Formation and Control of the Accumulated Pitch Error

5.4.2 Defect Analysis of the Cold Rolling Forming Spline Shaft
5.5 Quality Control Methods of Cold Rolling Forming
 Spline Shafts .. 130
 5.5.1 Design of the Cold Rolling Billet 130
 5.5.2 Setting of the Roller and Adjustment of the Tooth Positions 132
 5.5.3 Reasonable Selection of the Process Parameters 133

References .. 135

6 Mechanism and Process Analysis on the Cold Rolling Forming of Threads 137
 6.1 Principle of the Thread Cold Rolling Forming Process 137
 6.1.1 Two-Wheel Rolling of Threads 138
 6.1.2 Three-Wheel Rolling of Threads 139
 6.2 Diameter Conditions of Three-Wheel Rolling Threads 140
 6.3 Cold Rolling Forming Process of Threads 141
 6.4 Relative Movement Between the Workpiece and the Rolling Wheel 144
 6.4.1 Axial Motion Relationship 144
 6.4.2 Rotational Motion Relationship Between the Workpiece and the Rolling Wheel 146
 6.4.3 Relative Sliding Between the Rolling Wheel and the Workpiece 148

Reference ... 150

7 Process Parameters in the Cold Rolling Forming of Threads 151
 7.1 Thread Billets Before Cold Rolling Forming 151
 7.1.1 Commonly Used Calculation Formulas of the Workpiece Billet Diameter 151
 7.1.2 Solution of the Billet Diameter of the Cold Rolling Forming Thread 153
 7.1.3 Chamfer of the Billet 156
 7.1.4 Material of the Rolling Billet 157
 7.2 Parameters in the Cold Rolling Forming Process of Threads ... 160
 7.2.1 Rolling Force 160
 7.2.2 Selection of the Rolling Speed 170
 7.2.3 Selection of the Feed Rate in Thread Rolling 171
 7.3 Cold Rolling Forming of Hollow Thin-Walled Thread Components 173
 7.3.1 Cold Rolling Forming of Hollow Threads 173
 7.3.2 Wall Thickness of the Cold Rolling Hollow Thread Components 174

References .. 185
8 Numerical Simulation of the Thread Cold Rolling Forming Process ... 187
 8.1 Basic Procedure and Assumptions 187
 8.1.1 Numerical Simulation Procedure of the Thread Cold Rolling Process 187
 8.1.2 Simplification of the Model 188
 8.2 Simulation of the Cold Rolling Forming Process of a M10 × 1.5 Solid Thread .. 188
 8.2.1 Load and Moment of the Die (Rolling Wheel) 190
 8.2.2 Stress State Analysis of the Workpiece 194
 8.3 Numerical Simulation on the Cold Rolling Forming of Hollow Threads .. 196
 8.3.1 Analysis of the Rolling Force 197
 8.3.2 Velocity Field .. 199
 8.3.3 Stress State of the Workpiece 201
 8.3.4 Analysis of the Strain State 204
 8.4 Failure Analysis of the Thread Components 204
 8.4.1 Variation of the Effective Stress in the Workpiece 204
 8.4.2 Repairing Action of the Three Rolling Wheels on the Instability of the Hollow Thread 206

References .. 208

9 Metal Flow and Parameter Optimization of Thread Cold Rolling Forming Process 209
 9.1 Cold Rolling Forming of Threads with Three-Wheel Rolling Machine .. 209
 9.1.1 Material of the Billet and the Forming Machine 209
 9.1.2 Factors Influencing the Cold Rolling Forming Process of Threads .. 210
 9.1.3 Influence of the Hollow Thread Wall Thickness on the Forming of Threads 212
 9.2 Metal Flow Rules in the Cold Rolling Forming Process of Threads ... 213
 9.3 Hardness Distribution of the Cold Rolling Forming and Cutting Threads 217
 9.4 Optimization of the Rolling Parameters 220
 9.4.1 Determination of the Orthogonal Factors, Levels, and Index of the Thread Cold Rolling Forming Parameters .. 220
 9.4.2 Hardening Degree Under Different Forming Conditions ... 222
 9.5 Determination of the Optimized Rolling Parameters 222

References .. 225
10 Cold Rolling Precision Forming Equipments 227
 10.1 Summary ... 227
 10.2 Design of the Cold Rolling Forming Machine
and the Rolling Wheel ... 230
 10.2.1 Structure and Parameters of the Equipment 230
 10.2.2 Design of the Synchronous Spindle Damping
 Absorption ... 231
 10.2.3 Modeling and Simulation of the Hydraulic System 233
 10.2.4 Design of the Rolling Wheel 241
 10.3 Measuring System of the Mechanical Parameters 243
 10.3.1 Measurement Method of the Spindle Torque 243
 10.3.2 Measuring of the Radial Feeding Force
 of the Slider ... 245
 10.3.3 The Data Acquisition System 246
 10.4 Determination of the Process Parameters 247
 10.4.1 Rotation Speed of the Rolling Wheel 247
 10.4.2 Feed Rate of the Rolling Wheel 248
 10.4.3 Control of the Spindle Positions 249
 10.5 Mechanical Parameters in the Cold Rolling Precision
 Forming Process ... 250
 10.5.1 Dynamic Load of the Forming Process 250
 10.5.2 Influence of the Process Parameters
 on the Maximum Forming Force 252
 10.5.3 Comparison Between the Theoretical Calculation
 and Experimental Results 255
 10.6 Brief Introduction of the Cold Rolling Precision Forming
 Equipments .. 256
 10.6.1 Cold Rolling Forming Equipments of Kinefac
 Corporation(Kinefac) in the USA 256
 10.6.2 Cold Rolling Equipments of Profiroll Corporation
 in Germany .. 263
 10.6.3 Cold Rolling Forming Equipments of Qingdao
 Shengjian Machinery Factory 272

References .. 276
Cold Rolling Precision Forming of Shaft Parts
Theory and Technologies
Song, J.; Liu, Z.; Li, Y.
2017, XVII, 276 p. 179 illus., 85 illus. in color.,
Hardcover
ISBN: 978-3-662-54046-6