Contents

Part I Non-driven Mechanical Gyroscopes

1 Operating Theory of a Non-driven Mechanical Gyroscope 3
 1.1 Characteristics of a Flying Aircraft 3
 1.2 Motion Equation for the Sensitive Elements in a Non-driven Mechanical Gyroscope 9
 1.3 Performance of the Gyroscope as the Aircraft Rotates With a Constant Angular Velocity 16
 1.4 Choice of System Scheme for a Non-driven Mechanical Gyroscope .. 19
 1.5 Dynamic Performance Regulation of the System 27
 1.6 Stability of a Non-driven Mechanical Gyroscope with Negative Velocity Feedback 35
 1.7 Technical Performance of a Non-driven Mechanical Gyroscope ... 56

2 Precision of a Non-driven Mechanical Gyroscope with Negative Velocity Feedback 59
 2.1 Measurement Precision of a Constant Angular Velocity Rotating Around The Horizontal Axis 59
 2.2 Regulation of a Non-driven Mechanical Gyroscope 80

3 Performances of Non-driven Mechanical Gyroscope in the Condition of an Alternating Angular Velocity 85
 3.1 Performance of Non-driven Mechanical Gyroscope in the Condition of an Angular Vibration 86
 3.2 Output Signal of Non-driven Mechanical Gyroscope in the Condition of an Angular Vibration 100
3.3 Measurement Accuracy of the Harmonic Angular Velocity for the Aircraft .. 105
3.4 Performance of Non-driven Mechanical Gyroscope in a Circumferential Vibration 129

4 The Operating Errors of a Non-driven Mechanical Gyroscope ... 137
 4.1 Error Caused by Static Unbalance of the Framework .. 137
 4.2 Error Caused by Angular Vibration and Circumferential Vibration .. 141
 4.3 Error Caused by Imprecise Installation .. 143
 4.4 Error Caused by Change of Environmental Temperature ... 146

Part II Non-driven Micromechanical Gyroscopes

5 The Micromechanical Accelerometer and the Micromechanical Gyroscope .. 153
 5.1 The Micromechanical Accelerometer .. 153
 5.1.1 Basic Principle, Technology Type and Applications of a Micromechanical Accelerometer 153
 5.1.2 The Working Principle of a Micromechanical Accelerometer .. 156
 5.1.3 The Micromechanical Accelerometer Manufactured by a Bulk Micromachining Process 157
 5.1.4 The Micromechanical Accelerometer Manufactured by a Surface Micromachining Process 161
 5.1.5 Force Feedback .. 166
 5.1.6 The Resonant Micromechanical Accelerometer .. 168
 5.2 The Micromechanical Gyroscope .. 171
 5.2.1 The Structural Basis of a Micromechanical Gyroscope ... 171
 5.2.2 The Basic Principle of a Micromechanical Gyroscope .. 173
 5.2.3 Frequency Bandwidth .. 176
 5.2.4 Thermal Mechanical Noise .. 179
 5.2.5 Types of Micromechanical Gyroscope .. 180

6 The Working Principle of a Non–Driven Micromechanical Gyroscope .. 187
 6.1 The Structure Principle ... 187
 6.2 The Dynamic Model ... 188
 6.2.1 The Mass Vibrational Model ... 188
 6.2.2 The Solution of the Angular Vibrational Equation .. 193
 6.3 Analysis and Calculation of Kinetic Parameters .. 196
 6.3.1 Torsion Stiffness of the Elastic Supporting Beam .. 196
 6.3.2 Parameter Calculation of the Flexible Joints ... 197
6.3.3 The Damping Coefficient of Angular Vibration for the Vibrating Element 199
6.3.4 Relationship Between the Angular Vibration Natural Frequency, the Angular Vibration Amplitude and the Measured Angular Velocity 201
6.4 Signal Detection 202
6.4.1 The Relationship Between the Output Voltage and The Swing Angle 203
6.4.2 Signal Processing Circuit 205
6.5 ANSYS Simulation and Analogy 210
6.5.1 Modal Analysis 210
6.5.2 Frequency Response Analysis 211

7 Error of a Non-driven Micromechanical Gyroscope 213
7.1 Motion Equations of a Vibratory Gyroscope 213
7.2 Error Principle of a Vibratory Gyroscope 224
7.3 Error Calculation of a Non-driven Micromechanical Gyroscope 230
7.4 Error of a Non-driven Micromechanical Gyroscope 233

8 Phase Shift of a Non-driven Micromechanical Gyroscope 237
8.1 Phase Shift Calculation of a Non-driven Micromechanical Gyroscope 237
8.2 Phase Shift of a Non-driven Micromechanical Gyroscope 241
8.3 Feasibility of Adjusting the Position to Compensate the Phase Shift of the Output Signal 243
8.4 Characteristic Calculation of a Non-driven Micromechanical Gyroscope in the Angular Vibration Table 247

9 Static Performance Test of a Non-driven Micromechanical Gyroscope .. 251
9.1 Performance of the Prototype of a Non-driven Micromechanical Gyroscope 251
9.1.1 Temperature Performance of the Prototype 251
9.1.2 Performance of the Prototype 254
9.1.3 Temperature Stability of the Prototype 256
9.2 Performance of a CJS-DR-WB01 Type Silicon Micromechanical Gyroscope 257
9.3 Performance of a CJS-DR-WB02 Type Silicon Micromechanical Gyroscope 258
9.4 Performance Test of CJS-DR-WB03 Type Silicon Micromechanical Gyroscope 258
Part III Applications of Non-driven Micromechanical Gyroscopes

10 Signal Processing ... 285
 10.1 Inhibiting the Influence of a Change in Rolling Angular Velocity of the Rotating Body on the Stability of the Output Signal 285
 10.1.1 Influence of a Change in Rolling Angular Velocity of the Rotating Body on the Output Signal 285
 10.1.2 Method for Inhibiting the Influence of a Change in Rolling Angular Velocity on the Output Signal 285
 10.1.3 Validation of Inhibiting Influence Method 288
 10.2 The Attitude Demodulation Method of a Micromechanical Gyroscope Based on Phase Difference 292
 10.2.1 Study of the Phase Difference Between the Output Signal and the Reference Signal of the Gyroscope ... 292
 10.2.2 Factors Influencing Phase Difference 300
 10.2.3 Phase Difference Compensating Method 307
 10.3 Posture Demodulation of the Rotating Body Based on the Micromechanical Gyroscope 310
 10.3.1 Demodulation Method 310
 10.3.2 Simulation Experiment 321

11 Applications in the Flight Attitude Control System 325
 11.1 Calculation Method Design and Software Creation 325
 11.1.1 Calculation Method and Software 325
 11.1.2 Computer Software Design 325
 11.2 Influence Connected Motion (Angular Vibration) as Three Axes Move Simultaneously 329
 11.3 DSP Digital Output of the Gyroscope 330
 11.3.1 Hardware Circuit Design 330
 11.3.2 Algorithm and Software Realization 331
 11.3.3 Test Results 334
 11.4 Attitude Sensing System for Single Channel Control of the Rotating Flight Carrier 337
 11.5 Three Channels Attitude Sensing System of the Rotating Flight Carrier Through the Rectangular Coordinate Transformation 340
 11.6 Attitude Sensing System of the Rotating Flight Carrier Through the Polar Coordinate Transformation 344
 11.6.1 Method for Obtaining the Transverse Angular Velocity Relative to the Rotating Coordinate System of the Rotating Flight Carrier 346
 11.6.2 Method for Obtaining the Rolling Angular Velocity Relative to the Coordinate System of the Quasi-Rotating Flight Carrier 348
11.6.3 Method for Obtaining the Pitch Angular Velocity and the Yaw Angular Velocity Relative to the Coordinate System of the Quasi-Rotating Flight Carrier 350
11.7 Applications in the Non-rotating Flight Carrier 351

References .. 353
Non-driven Micromechanical Gyroscopes and Their Applications
Zhang, F.; Zhang, W.; Wang, G.
2018, XVI, 361 p. 183 illus., 1 illus. in color., Hardcover