Contents

1 Geological Foundation of Well Pattern Optimization 1
 1.1 Overview of Fine Reservoir Description 2
 1.1.1 Stages of Reservoir Description 2
 1.1.2 Purpose of Fine Reservoir Description 11
 1.2 Main Contents and Methods of Fine Reservoir Description 13
 1.2.1 Fine Division and Contrast of Reservoirs 13
 1.2.2 Microscopic Structure Research 20
 1.2.3 Sedimentary Micro-facies Analysis and Sand Body Connectivity 23
 1.2.4 Reservoir Heterogeneity 27
 1.3 Reservoir Heterogeneity and Quantitative Characterization 28
 1.3.1 Reservoir Heterogeneity Classification 28
 1.3.2 Geological Characteristics of Reservoir Heterogeneity 31
 1.3.3 Areal Heterogeneity ... 34
 1.3.4 In-Layer Heterogeneity 37
 1.3.5 Micro-heterogeneity .. 41
 1.3.6 Quantitative Features of Reservoir Heterogeneity 42
 1.4 Influence of Reservoir Heterogeneity on the Development Effect and Well Pattern ... 49
 1.4.1 Influence of Longitudinal Heterogeneity on the Development ... 49
 1.4.2 Influence of Areal Heterogeneity on the Oilfield Development .. 53
 1.4.3 Water-Flooding Features of Various Types of Rhythm 57
 1.4.4 Influence of Reservoir Microstructures on the Water-Flooding Performance 58
2 Reservoir Direction Characteristics Investigation and Permeability Distribution Law

2.1 Directional Characteristics of the Reservoir 61

2.1.1 Provenance Direction and Depositional Direction 62

2.1.2 Principal Permeability Direction 64

2.1.3 Principal Stress Direction and Fracture 66

2.1.4 Fault Strike and Structural Dip 67

2.1.5 Direction of Edge and Bottom Water Invasion 69

2.2 Permeability Distribution Law 71

2.2.1 Cause for Permeability Anisotropy 71

2.2.2 Distribution of Permeability 71

2.2.3 Description Method of Permeability Vector 76

2.3 Test and Calculation Methods of Permeability Direction 78

2.3.1 Calculation of Permeability Vector 78

2.3.2 Analysis of Directivity of Reservoir Permeability with Variogram 81

2.3.3 TDS Technique for Determining the Anisotropy of Reservoir Plane Permeability 83

2.3.4 Method for Identifying the Main Permeability Direction of the Fractured Reservoir and the Main Fracture Direction 87

2.4 Influence of Permeability Direction on Development Efficiency .. 89

2.4.1 Influence of Vertical Heterogeneity of Permeability on Water Flooding Recovery 89

2.4.2 Influence of Lateral Heterogeneity of Permeability on Water Flooding Recovery 91

2.4.3 Influence of Permeability Anisotropy on Well Pattern Arrangement 92

2.4.4 Influence of Water Flooding Direction on Development Efficiency .. 95

2.4.5 Influence of Fracture Orientation on Water Drive Efficiency .. 97

3 Injection-Production Well Pattern Optimal Control Theory

3.1 Waterflooding Characteristics in Sandstone Reservoirs 99

3.1.1 Overview of the Well Pattern Research 99

3.1.2 Types and Characteristics of the Areal Well Pattern Deployment .. 101

3.1.3 Comparison of Different Well Patterns 105

3.1.4 The Choice of the Areal Well Pattern 110

3.2 Well Pattern Optimal Control Theory 111

3.2.1 Problems of the Areal Well Pattern 111

3.2.2 Concept of Well Pattern Optimal Control 116

3.2.3 Summary of Well Pattern Optimal Control 119
3.3 Principles and Standards for Well Pattern Optimal Control
3.3.1 Principles for Well Pattern Optimal Control
3.3.2 Standards for Well Pattern Optimal Control
3.3.3 Implementation of Well Pattern Optimal Control

3.4 Influence Factor Analysis of Well Pattern Optimal Control
3.4.1 Reservoir Distribution Characteristics
3.4.2 Sedimentary Characteristics of the Reservoir
3.4.3 Characteristics of Reservoir Heterogeneity
3.4.4 Development Strategies and Modes
3.4.5 Development Technologies and Measures
3.4.6 Geographical Environment and Economic Factors

4 Principles and Adjustment Methods for the Vector Well Pattern
4.1 Concept and Physical Meaning of the Vector Well Pattern
4.1.1 Concept of the Vector Well Pattern
4.1.2 Physical Meaning of the Vector Well Pattern
4.1.3 A Case Study of the Vector Well Pattern
4.1.4 Theoretical Basis for the Vector Well Pattern
4.1.5 The Actual Development Effect with the Vector Well Pattern

4.2 Vector Well Pattern Arrangement Principles
4.2.1 Methods for the Vector Well Pattern Arrangement
4.2.2 Problems in the Vector Well Pattern Deployment
4.2.3 Choose the Right Well Types for Different Reservoirs

4.3 Vector Well Pattern Design
4.3.1 Design of Well Spacing in the Vector Well Pattern
4.3.2 Direction Design of the Vector Well Pattern
4.3.3 Case Studies of the Vector Well Pattern Design

4.4 Adjustment Methods Based on the Vector Well Pattern
4.4.1 Adjustment Strategies for the Permeability Anisotropic Reservoir
4.4.2 Adjustment Strategies in Terms of Reservoir Characteristics
4.4.3 Adjustment Strategies in Terms of Sedimentary Micro-facies Characteristics

5 Well Pattern Models for Different Reservoir Characteristics
5.1 Well Pattern Optimization for Channel Deposit Sedimentary Micro-facies
5.1.1 Development Effects of Different Well Patterns
5.1.2 Water Flooding Direction Optimization

5.2 Well Pattern Optimization for Sheet Sand Sedimentary Micro-facies
5.2.1 Development Effects of Different Well Patterns
5.2.2 Comparative Study on the Development Effects of Different Well Patterns 189
5.2.3 Vector Well Pattern Optimization 190
5.3 Development Effects Analysis on Well Patterns of Different Micro-facies Combinations 191
 5.3.1 Influence of Different Well Patterns on the Development Effect .. 192
 5.3.2 Influence of Well Spacing Densities of Different Micro-facies on the Development Effect 194
5.4 Well Patterns in the Vertical Heterogeneous Reservoir ... 197
 5.4.1 Construction of the Theoretical Geologic Model .. 197
 5.4.2 Well Pattern Optimization with Two Different Permeability Directions 201

6 Analysis on the Application of the Vector Well Pattern 225
 6.1 Optimal Design and Application of the Vector Well Pattern in Zhao’ao Oilfield 225
 6.1.1 Overview of Zhao’ao Oilfield .. 225
 6.1.2 Optimization Analysis of the Vector Well Pattern in Zhao’ao Oilfield 227
 6.1.3 Adjustment Analysis of the Vector Well Pattern in Zhao’ao Oilfield ... 233
 6.2 Optimal Design and Application of the Vector Well Pattern in Oil Group VI of Shuanghe Oilfield 239
 6.2.1 Overview of Oil Group VI of Shuanghe Oilfield .. 239
 6.2.2 Reservoir Characteristics and Directivity .. 242
 6.2.3 Vector Well Pattern Adjustment Analysis .. 244
 6.3 Optimal Design and Application of the Vector Well Pattern in Wanglongzhuang Fault Block Reservoir 248
 6.3.1 Overview of Wanglongzhuang Reservoir .. 248
 6.3.2 Directional Characteristics of the Reservoir .. 250
 6.3.3 Design and Effect Forecast of the Vector Well Pattern ... 251
 6.4 Comparative Analysis on the Application of Well Pattern Optimal Theory in Different Units 258
 6.4.1 Differences Between the Initial Vector Well Pattern and the Actual Well Pattern 258
 6.4.2 Effect Comparison and Analysis of Applying the Vector Well Pattern in Different Reservoirs 260

7 Complex Well Pattern Optimal Design .. 263
 7.1 Overview of Complex Well Pattern Optimal Design .. 263
 7.1.1 A Brief Introduction to the Development of Horizontal Wells ... 265
 7.1.2 Multilateral Wells .. 269
7.2 Horizontal Wells and Well Pattern Optimal Design 278
 7.2.1 Advantages and Adaptability of Horizontal Wells in Reservoir Development .. 278
 7.2.2 Design of the Horizontal Well Extending Direction 280
 7.2.3 Design of the Length of the Horizontal Section 281
 7.2.4 Design Principles for Spatial Location of Horizontal Wells ... 285
 7.2.5 Optimization of the Design Method of Horizontal Well Productivity .. 289
 7.2.6 Principles and Methods for the Horizontal Well Pattern Design .. 292
 7.2.7 Design of the Horizontal Well Pattern 293

7.3 Well Pattern Optimal Design for the Fractured Low-Permeability Reservoir .. 299
 7.3.1 Design of the Vertical Well Pattern 300
 7.3.2 Design of the Horizontal Well Pattern 307
 7.3.3 Optimal Design of Horizontal Well Fracturing 319

7.4 Important Factors for the Well Pattern Design 328
 7.4.1 Penetration Ratio .. 329
 7.4.2 Ground Stress ... 329
 7.4.3 Influence of Types of Horizontal Wells on the Development Effect ... 330
 7.4.4 Horizontal Section Length 331
 7.4.5 Optimal Design of the Horizontal Section Direction 332
 7.4.6 Optimization Research on the Well Line Direction 333
 7.4.7 Formation and Fluid Parameters (Permeability, Reservoir Thickness, Fluid Viscosity, and Mobility Ratio) .. 334

8 Determination of Reasonable Well Spacing Density 335
 8.1 Overview of Well Spacing Density 335
 8.1.1 Classification of Well Spacing Density 335
 8.1.2 Basic Principles for Well Spacing Density Selection 336
 8.2 Determination of Conventional Vertical Well Spacing and Well Pattern Density ... 338
 8.2.1 Methods in Terms of Reservoirs Characteristics 338
 8.2.2 Determination of Reasonable Well Spacing Density in Terms of Economic Benefits 356
 8.3 Determination of Technical Limit Well Spacing for the Low-Permeability Reservoir .. 360
 8.3.1 Determination of the Technical Limit Well Spacing in Terms of Seepage Characteristics 360
 8.3.2 Determination of Starting Pressure Gradient 364
 8.3.3 Determination of the Limit Well Spacing with the Starting Pressure Gradient ... 368
8.4 Determination of Heavy Oil Reservoir Well Pattern Density 370
 8.4.1 The Heating Radius Method 370
 8.4.2 The Volumetric Method 371
 8.4.3 The Method of Controllable Reserves Per Well 372
 8.4.4 Shelkachev’s Iterative Method 373
 8.4.5 The Injection-Production Ratio Method 375
 8.4.6 The Oil Recovery Factor Control Method 376

Bibliography ... 379
The Control Theory and Application for Well Pattern Optimization of Heterogeneous Sandstone Reservoirs
Liu, D.; Sun, J.
2017, XIV, 384 p. 263 illus., Hardcover
ISBN: 978-3-662-53285-0