
Chapter 2
Topological Spaces

A topological space .X; �/ is a set X with a topology � , i.e., a collection of subsets
of X with the following properties:

1. X 2 � , ; 2 � ;
2. If A;B 2 � , then A \ B 2 � ;
3. For any collection fA˛g˛, if all A˛ 2 � , then [˛A˛ 2 � .

The sets in � are called open sets, and their complements are called closed sets.
A base of the topology � is a collection of open sets such that every open set is a
union of sets in the base. The coarsest topology has two open sets, the empty set
and X, and is called the trivial topology (or indiscrete topology). The finest topology
contains all subsets as open sets, and is called the discrete topology.

In a metric space .X; d/ define the open ball as the set B.x; r/ D fy 2 X W
d.x; y/ < rg, where x 2 X (the center of the ball), and r 2 R; r > 0 (the radius
of the ball). A subset of X which is the union of (finitely or infinitely many) open
balls, is called an open set. Equivalently, a subset U of X is called open if, given any
point x 2 U, there exists a real number � > 0 such that, for any point y 2 X with
d.x; y/ < �, y 2 U.

Any metric space is a topological space, the topology (metric topology, topology
induced by the metric d) being the set of all open sets. The metric topology is always
T4 (see below a list of topological spaces). A topological space which can arise in
this way from a metric space, is called a metrizable space.

A quasi-pseudo-metric topology is a topology on X induced similarly by a quasi-
semimetric d on X, using the set of open d-balls B.x; r/ as the base. In particular,
quasi-metric topology and pseudo-metric topology are the terms used for the case of,
respectively, quasi-metric and semimetric d. In general, those topologies are not T0.

Given a topological space .X; �/, a neighborhood of a point x 2 X is a set
containing an open set which in turn contains x. The closure of a subset of a
topological space is the smallest closed set which contains it. An open cover of
X is a collection L of open sets, the union of which is X; its subcover is a cover K
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64 2 Topological Spaces

such that every member of K is a member of L; its refinement is a cover K, where
every member of K is a subset of some member of L. A collection of subsets of X is
called locally finite if every point of X has a neighborhood which meets only finitely
many of these subsets.

A subset A 
 X is called dense if X D cl.A/, i.e., it consists of A and its limit
points; cf. closed subset of metric space in Chap. 1. The density of a topological
space is the least cardinality of its dense subset. A local base of a point x 2 X is a
collection U of neighborhoods of x such that every neighborhood of x contains some
member of U .

A function from one topological space to another is called continuous if the
preimage of every open set is open. Roughly, given x 2 X, all points close to x
map to points close to f .x/. A function f from one metric space .X; dX/ to another
metric space .Y; dY/ is continuous at the point c 2 X if, for any positive real number
�, there exists a positive real number ı such that all x 2 X satisfying dX.x; c/ < ı

will also satisfy dY. f .x/; f .c// < �; the function is continuous on an interval I if it
is continuous at any point of I.

The following classes of topological spaces (up to T4) include any metric space.

• T0-space
A T0-space (or Kolmogorov space) is a topological space in which every

two distinct points are topologically distinguishable, i.e., have different neigh-
borhoods.

• T1-space
A T1-space (or accessible space) is a topological space in which every two

distinct points are separated, i.e., each does not belong to other’s closure. T1-
spaces are always T0.

• T2-space
A T2-space (or Hausdorff space) is a topological space in which every two

distinct points are separated by neighborhoods, i.e., have disjoint neighborhoods.
T2-spaces are always T1.

A space is T2 if and only if it is both T0 and pre-regular, i.e., any two
topologically distinguishable points are separated by neighborhoods.

• Regular space
A regular space is a topological space in which every neighborhood of a

point contains a closed neighborhood of the same point. A T3-space (or Vietoris
space, regular Hausdorff space) is a topological space which is T1 and regular.

Bing, Nagata, Smirnov showed in 1950–1951 that a topological space is
metrizable if and only if it is regular, T0 and has a countably locally finite base.

A completely regular space (or Tychonoff space) is a Hausdorff space
.X; �/ in which any closed set A and any x 62 A are functionally separated, i.e.,
there is a continuous function f W X ! Œ0; 1� such that f .A/ D 0 and f .B/ D 1.

• Normal space
A normal space is a topological space in which, for any two disjoint closed

sets A and B, there exist two disjoint open sets U and V such that A 
 U, and
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B 
 V . A T4-space (or Tietze space, normal Hausdorff space) is a topological
space which is T1 and normal. Any metric space is a perfectly normal T4-space.

A completely (or hereditarily) normal space is a topological space in
which any two separated (i.e., disjoint from the other’s closure) sets have
disjoint neighborhoods. A T5-space (or completely normal Hausdorff space) is a
topological space which is completely normal and T1. T5-spaces are always T4.

A monotonically normal space is a completely normal space in which any
two separated subsets A and B are strongly separated, i.e., there exist open sets
U and V with A 
 U, B 
 V and Cl.U/ \ Cl.V/ D ;.

A perfectly normal space is a topological space .X; �/ in which any two
disjoint closed subsets of X are functionally separated. A T6-space (or perfectly
normal Hausdorff space) is a topological space which is T1 and perfectly normal.
T6-spaces are always T5.

• Moore space
A Moore space is a regular space with a development.
A development is a sequence fUngn of open covers such that, for every x 2 X

and every open set A containing x, there exists n such that St.x;Un/ D [fU 2
Un W x 2 Ug 
 A, i.e., fSt.x;Un/gn is a neighborhood base at x.

• Polish space
A separable space is a topological space which has a countable dense subset.
A Polish space is a separable space which can be equipped with a complete

metric. A Lusin space is a topological space such that some weaker topology
makes it into a Polish space; every Polish space is Lusin. A Souslin space is a
continuous image of a Polish space; every Lusin space is Suslin.

• Lindelöf space
A Lindelöf space is a topological space in which every open cover has a

countable subcover.
• First-countable space

A topological space is called first-countable if every point has a countable
local base. Every metric space is first-countable.

• Second-countable space
A topological space is called second-countable if its topology has a countable

base. Such space is quasi-metrizable and, if and only if it is a T3-space,
metrizable.

Second-countable spaces are first-countable, separable and Lindelöf. The
properties second-countable, separable and Lindelöf are equivalent for metric
spaces.

The Euclidean space E
n with its usual topology is second-countable.

• Baire space
A Baire space is a topological space in which every intersection of countably

many dense open sets is dense. Every complete metric space is a Baire space.
Every locally compact T2-space (hence, every n-manifold) is a Baire space.

• Alexandrov space
An Alexandrov space is a topological space in which every intersection of

arbitrarily many open sets is open.
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A topological space is called a P-space if every Gı-set (i.e., the intersection
of countably many open sets) is open.

A topological space .X; �/ is called a Q-space if every subset A 
 X is a
Gı-set.

• Connected space
A topological space .X; �/ is called connected if it is not the union of a pair

of disjoint nonempty open sets. In this case the set X is called a connected set.
A connected topological space .X; �/ is called unicoherent if the intersection

A \ B is connected for any closed connected sets A;B with A [ B D X.
A topological space .X; �/ is called locally connected if every point x 2 X

has a local base consisting of connected sets.
A topological space .X; �/ is called path-connected (or 0-connected) if for

every points x; y 2 X there is a path � from x to y, i.e., a continuous function
� W Œ0; 1� ! X with �.x/ D 0; �.y/ D 1.

A topological space .X; �/ is called simply connected (or 1-connected) if
it consists of one piece, and has no circle-shaped “holes” or “handles” or,
equivalently, if every continuous curve of X is contractible, i.e., can be reduced
to one of its points by a continuous deformation.

A topological space .X; �/ is called hyperconnected (or irreducible) if X
cannot be written as the union of two proper closed sets.

• Sober space
A topological space .X; �/ is called sober if every hyperconnected closed

subset of X is the closure of exactly one point of X. Any sober space is a T0-
space.

Any T2-space is a sober T1-space but some sober T1-spaces are not T2.
• Paracompact space

A topological space is called paracompact if every open cover of it has an
open locally finite refinement. Every metrizable space is paracompact.

• Totally bounded space
A topological space .X; �/ is called totally bounded (or pre-compact) if it can

be covered by finitely many subsets of any fixed cardinality.
A metric space .X; d/ is a totally bounded metric space if, for every real

number r > 0, there exist finitely many open balls of radius r, whose union is
equal to X.

• Compact space
A topological space .X; �/ is called compact if every open cover of X has a

finite subcover.
Compact spaces are always Lindelöf, totally bounded, and paracompact. A

metric space is compact if and only if it is complete and totally bounded. A
subset of a Euclidean space En is compact if and only if it is closed and bounded.

There exist a number of topological properties which are equivalent to
compactness in metric spaces, but are nonequivalent in general topological
spaces. Thus, a metric space is compact if and only if it is a sequentially compact
space (every sequence has a convergent subsequence), or a countably compact
space (every countable open cover has a finite subcover), or a pseudo-compact
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space (every real-valued continuous function on the space is bounded), or a
weakly countably compact space (i.e., every infinite subset has an accumulation
point).

Sometimes, a compact connected T2-space is called continuum; cf. contin-
uum in Chap. 1.

• Locally compact space
A topological space is called locally compact if every point has a local base

consisting of compact neighborhoods. The Euclidean spaces E
n and the spaces

Qp of p-adic numbers are locally compact.
A topological space .X; �/ is called a k-space if, for any compact set Y 
 X

and A 
 X, the set A is closed whenever A \ Y is closed. The k-spaces are
precisely quotient images of locally compact spaces.

• Locally convex space
A topological vector space is a real (complex) vector space V which is a T2-

space with continuous vector addition and scalar multiplication. It is a uniform
space (cf. Chap. 3).

A locally convex space is a topological vector space whose topology has a
base, where each member is a convex balanced absorbent set. A subset A of V is
called convex if, for all x; y 2 A and all t 2 Œ0; 1�, the point tx C .1� t/y 2 A, i.e.,
every point on the line segment connecting x and y belongs to A. A subset A is
balanced if it contains the line segment between x and �x for every x 2 A; A is
absorbent if, for every x 2 V , there exist t > 0 such that tx 2 A.

The locally convex spaces are precisely vector spaces with topology induced
by a family fjj:jj˛g of seminorms such that x D 0 if jjxjj˛ D 0 for every ˛.

Any metric space .V; jjx � yjj/ on a real (complex) vector space V with a
norm metric jjx � yjj is a locally convex space; each point of V has a local base
consisting of convex sets. Every Lp with 0 < p < 1 is an example of a vector
space which is not locally convex.

• n-manifold
Broadly, a manifold is a topological space locally homeomorphic to a

topological vector space over the reals.
But usually, a topological manifold is a second-countable T2-space that

is locally homeomorphic to Euclidean space. An n-manifold is a topological
manifold such that every point has a neighborhood homeomorphic to E

n.
• Fréchet space

A Fréchet space is a locally convex space .V; �/ which is complete as a
uniform space and whose topology is defined using a countable set of seminorms
jj:jj1; : : : ; jj:jjn; : : : , i.e., a subset U 
 V is open in .V; �/ if, for every u 2 U,
there exist � > 0 and N � 1 with fv 2 V W jju � vjji < � if i � Ng 
 U.

A Fréchet space is precisely a locally convex F-space (cf. Chap. 5). Its
topology can be induced by a translation invariant metric (Chap. 5) and it is
a complete and metrizable space with respect to this topology. But this topology
may be induced by many such metrics. Every Banach space is a Fréchet space.
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• Countably-normed space
A countably-normed space is a locally convex space .V; �/ whose topology

is defined using a countable set of compatible norms jj:jj1; : : : ; jj:jjn; : : : . It means
that, if a sequence fxngn of elements of V that is fundamental in the norms jj:jji

and jj:jjj converges to zero in one of these norms, then it also converges in the
other. A countably-normed space is a metrizable space, and its metric can be
defined by

1X

nD1

1

2n
� jjx � yjjn

1C jjx � yjjn
:

• Metrizable space
A topological space .T; �/ is called metrizable if it is homeomorphic to a

metric space, i.e., X admits a metric d such that the set of open d-balls fB.x; r/ W
r > 0g forms a neighborhood base at each point x 2 X. If, moreover, .X; d/ is
a complete metric space for one of such metrics d, then .X; d/ is a completely
metrizable (or topologically complete) space.

Metrizable spaces are always paracompact T2-spaces (hence, normal and
completely regular), and first-countable.

A topological space is called locally metrizable if every point in it has a
metrizable neighborhood.

A topological space .X; �/ is called submetrizable if there exists a metrizable
topology � 0 on X which is coarser than � .

A topological space .X; �/ is called proto-metrizable if it is paracompact and
has an orthobase, i.e., a base B such that, for B0 
 B, either \B0 is open, or B0
is a local base at the unique point in \B0. It is not related to the protometric in
Chap. 1.

Some examples of other direct generalizations of metrizable spaces follow.
A sequential space is a quotient image of a metrizable space.
Morita’s M-space is a topological space .X; �/ from which there exists a

continuous map f onto a metrizable topological space .Y; � 0/ such that f is closed
and f �1.y/ is countably compact for each y 2 Y.

Ceder’s M1-space is a topological space .X; �/ having a 
-closure-preserving
base (metrizable spaces have 
-locally finite bases).

Okuyama’s 
-space is a topological space .X; �/ having a 
-locally finite net,
i.e., a collection U of subsets of X such that, given of a point x 2 U with U open,
there exists U0 2 U with x 2 U0 
 U (a base is a net consisting of open sets).
Every compact subset of a 
-space is metrizable.

Michael’s cosmic space is a topological space .X; �/ having a countable net
(equivalently, a Lindelöf 
-space). It is exactly a continuous image of a separable
metric space. A T2-space is called analytic if it is a continuous image of a
complete separable metric space; it is called a Lusin space if, moreover, the
image is one-to-one.
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• Quasi-metrizable space
A topological space .X; �/ is called a quasi-metrizable space if X admits

a quasi-metric d such that the set of open d-balls fB.x; r/ W r > 0g forms a
neighborhood base at each point x 2 X.

A more general � -space is a topological space admitting a � -metric d (i.e.,
a function d W X � X ! R�0 with d.x; zn/ ! 0 whenever d.x; yn/ ! 0 and
d.yn; zn/ ! 0) such that the set of open forward d-balls fB.x; r/ W r > 0g forms a
neighborhood base at each point x 2 X.

The Sorgenfrey line is the topological space .R; �/ defined by the base
fŒa; b/ W a; b 2 R; a < bg. It is not metrizable but it is a first-countable
separable and paracompact T5-space; neither it is second-countable, nor locally
compact or locally connected. However, the Sorgenfrey line is quasi-metrizable
by the Sorgenfrey quasi-metric (cf. Chap. 12) defined as y � x if y � x, and 1,
otherwise.

• Symmetrizable space
A topological space .X; �/ is called symmetrizable (and � is called the

distance topology) if there is a symmetric d on X (i.e., a distance d W X � X !
R�0 with d.x; y/ D 0 implying x D y) such that a subset U 
 X is open if and
only if, for each x 2 U, there exists � > 0 with B.x; �/D fy 2 X W d.x; y/ <
�g 
 U.

In other words, a subset H 
 X is closed if and only if d.x;H/ D infyfd.x; y/ W
y 2 Hg > 0 for each x 2 XnU. A symmetrizable space is metrizable if and only
if it is a Morita’s M-space.

In Topology, the term semimetrizable space refers to a topological space
.X; �/ admitting a symmetric d such that, for each x 2 X, the family fB.x; �/ W
� > 0g of balls forms a (not necessarily open) neighborhood base at x. In other
words, a point x is in the closure of a set H if and only if d.x;H/ D 0.

A topological space is semimetrizable if and only if it is symmetrizable and
first-countable. Also, a symmetrizable space is semimetrizable if and only if it
is a Fréchet–Urysohn space (or E-space), i.e., for any subset A and for any point
x of its closure, there is a sequence in A converging to x.

• Hyperspace
A hyperspace of a topological space .X; �/ is a topological space on the

set CL.X/ of all nonempty closed (or, moreover, compact) subsets of X. The
topology of a hyperspace of X is called a hypertopology. Examples of such a
hit-and-miss topology are the Vietoris topology, and the Fell topology. Examples
of such a weak hyperspace topology are the Hausdorff metric topology, and the
Wijsman topology.

• Discrete topological space
A topological space .X; �/ is discrete if � is the discrete topology (the finest

topology on X), i.e., containing all subsets of X as open sets. Equivalently, it does
not contain any limit point, i.e., it consists only of isolated points.

• Indiscrete topological space
A topological space .X; �/ is indiscrete if � is the indiscrete topology (the

coarsest topology on X), i.e., having only two open sets, ; and X.
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It can be considered as the semimetric space .X; d/ with the indiscrete
semimetric: d.x; y/ D 0 for any x; y 2 X.

• Extended topology
Consider a set X and a map cl W P.X/ ! P.X/, where P.X/ is the set of all

subsets of X. The set cl.A/ (for A 
 X), its dual set int.A/ D Xncl.XnA/ and the
map N W X ! P.X/ with N.x/ D fA 
 X W x 2 int.A/g are called the closure,
interior and neighborhood map, respectively.

So, x 2 cl.A/ is equivalent to XnA 2 P.X/nN.x/. A subset A 
 X is closed if
A D cl.A/ and open if A D int.A/. Consider the following possible properties of
cl; they are meant to hold for all A;B 2 P.X/.

1. cl.;/ D ;;
2. A � B implies cl.A/ � cl.B/ (isotony);
3. A � cl.A/(enlarging);
4. cl.A [ B/ D cl.A/[ cl.B/ (linearity, and, in fact, 4 implies 2);
5. cl.cl.A// D cl.A/ (idempotency).

The pair .X; cl/ satisfying 1 is called an extended topology if 2 holds, a Brissaud
space (Brissaud, 1974) if 3 holds, a neighborhood space (Hammer, 1964) if 2
and 3 hold, a Smyth space (Smyth, 1995) if 4 holds, a pre-topology (Čech,
1966) if 3 and 4 hold, and a closure space (Soltan, 1984) if 2, 3 and 5 hold.
.X; cl/ is the usual topology, in closure terms, if 1, 3, 4 and 5 hold.
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