Contents

1 Introduction .. 1
 1.1 Observation of Superconductivity 1
 1.2 Cuprate Superconductors 3
 1.2.1 The Crystal Structure of Cuprates 3
 1.2.2 The Phase Diagram of Cuprates 5
 1.2.3 The Electronic Structure of Cuprates 6
 1.2.4 The Theoretical Models of Cuprates 8
 1.2.5 Many-Body Effects in Cuprates 10
 1.3 Iron-Based Superconductors 12
 1.3.1 The Crystal Structure of Iron-Based Superconductors ... 12
 1.3.2 The Phase Diagram of Iron-Based Superconductors ... 13
 1.3.3 The Electronic Structures of Iron-Based Superconductors 14
 1.3.4 The Magnetic Structures of Iron-Based Superconductors 14
 1.3.5 The Theoretical Models for Iron-Based Superconductors 15
 References ... 18

2 Angle-Resolved Photoemission Spectroscopy 21
 2.1 Energy Resolution of ARPES 22
 2.1.1 ARPES Measures the Occupied States 23
 2.1.2 The Selection of Work Function 24
 2.2 Momentum Resolution of ARPES 24
 2.2.1 Momentum Conservation in Step One: Ejection of Electrons from Initial to Final States 25
 2.2.2 Momentum Conservation in Step Two: Traveling of the Excited Electrons to Sample Surface ... 26
2.2.3 Momentum Conservation in Step Three: Escape of the Excited Electrons into the Vacuum

2.2.4 Determination of K_z in 3D Systems [2, 15]

2.3 Physical Properties Measured by ARPES [1, 2]

2.3.1 Transition Probability for the Optical Excitation

2.3.2 Single-Particle Spectral Function

References

3 ARPES Systems

3.1 Constituents and Categories of ARPES Systems

3.1.1 Constituents of a Typical ARPES System

3.1.2 Categories of ARPES Systems

3.2 Vacuum Ultraviolet Laser-Based ARPES System

3.2.1 Energy Resolution of the System [2]

3.2.2 Space Charge Effect Test [2]

3.2.3 Angular Mode and Momentum Resolution Test [2]

3.2.4 Bulk Sensitivity Test of the 6.994 eV Laser ARPES [2]

3.2.5 Modifications on the Helium Discharge Lamp of the ARPES System

3.3 Tunable Laser-Based ARPES System

3.4 Spin-Resolved Laser-Based ARPES System

3.5 Time-of-Flight System

References

4 Coexistence of Two Sharp-Mode Couplings in $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$

4.1 Introduction

4.2 Materials and Methods

4.3 Observation of Two Coexisting Energy Features

4.4 Momentum Dependence of the Energy Features

4.5 Temperature Dependence of the Energy Features

4.6 Doping Dependence of the Energy Features

4.7 The Possible Origin of the Coexisting Energy Features

4.8 Simulation of the Electron–Boson Coupling

4.9 Challenge to the Conventional Understanding

4.10 Summary

References

5 Similar Energy Features in $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$ and Pb

5.1 Introduction

5.2 Observation of the Fine Structures

5.3 Temperature Dependence of the Fine Structures

5.4 Momentum Dependence of the Fine Structures

5.5 Summary

References
6 Electronic Structures of the Superconducting Single-Layer FeSe/SrTiO₃ Films 81
6.1 Introduction .. 81
6.2 Method ... 83
 6.2.1 Preparation and Post-Annealing of the Single-Layer FeSe Films .. 83
 6.2.2 Calibration of the Sample Temperature 83
 6.2.3 High-Resolution ARPES Measurements 84
6.3 Fermi Surface and Band Structure 84
6.4 Temperature Dependence of the Superconducting Gap 86
6.5 Momentum Dependence of the Superconducting Gap 87
6.6 Discussion .. 89
References ... 91

7 Phase Diagram and High Tc Superconductivity in Single-Layer FeSe Films .. 95
7.1 Introduction .. 95
7.2 Materials and Methods ... 96
 7.2.1 Thin Film Preparation and Post-Annealing 96
 7.2.2 Sample Temperature Calibration 98
 7.2.3 High-Resolution ARPES Methods 98
7.3 Coexistence and Evolution of Two Competing Phases 98
 7.3.1 Observation of Two Competing Phases and Their Evolution with Carrier Concentration 98
 7.3.2 Electronic Structure for the N Phase, the S Phase, and the Intermediate State 102
7.4 Carrier Concentration Change Induced by Post-Annealing 104
7.5 N Phase of the Single-Layer FeSe Film and the Magnetic Phase of BaFe₂As₂ ... 105
7.6 Optimization of the High-Temperature Superconductivity in the Superconducting Phase 107
7.7 Examination of Particle–Hole Symmetry Along the Fermi Surface ... 109
7.8 Phase Diagram of the Single-Layer FeSe Films 110
7.9 Summary ... 111
References ... 112

8 Insulator–Superconductor Crossover in Single-Layer FeSe/SrTiO₃ Films ... 115
8.1 Introduction .. 116
8.2 Materials and Methods ... 117
8.4 Two Distinct Gaps

8.4.1 Different Temperature Dependence of the Gap Size

8.4.2 Different Temperature Dependence of the Peak Intensity

8.5 Similar Doping Evolution Between S Phase of FeSe Films and Cuprates

8.5.1 Single-Layer FeSe/SrTiO$_3$ Films and La-doped Bi$_2$Sr$_2$CuO$_{6+\delta}$

8.5.2 Single-Layer FeSe/SrTiO$_3$ Films and La$_{2-x}$Sr$_x$CuO$_4$

8.6 Origin of the Insulator–Superconductor Crossover and Strong Electron Correlation

8.7 Summary

References
Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors
Studies of Bi2212 and Single-Layer FeSe Film Grown on SrTiO3 Substrate
He, J.
2016, XVI, 126 p. 77 illus., 71 illus. in color., Hardcover
ISBN: 978-3-662-52730-6