Contents

1 New Developments and Decision-makings in Production and Retailing .. 1
 1.1 Production and Retail Operations 1
 1.1.1 New Developments in Manufacturing 1
 1.1.2 New Developments in Retailing 2
 1.2 Previous Studies on Decision-making Problems in Production and Retailing 3
 1.2.1 Production Planning 4
 1.2.2 Production Scheduling 4
 1.2.3 Assembly Line Balancing 6
 1.2.4 Sales Forecasting 7
 1.3 Techniques for Decision-making Problems in Production and Retailing 8
 1.3.1 Techniques for Production Optimization Problems ... 8
 1.3.2 Techniques for Sales Forecasting Problems 10
 1.4 Summary .. 10
References .. 10

2 Fundamentals of Intelligent Decision-Making Techniques 19
 2.1 Computational Intelligence Techniques: A Brief Overview ... 19
 2.1.1 What Is CI? ... 20
 2.1.2 Why Do We Need CI? 20
 2.1.3 Classification of CI Techniques 21
 2.2 Evolutionary Computation 22
 2.2.1 Optimum-Seeking Mechanism of Evolutionary
 Computation Techniques 23
 2.2.2 Brief Introduction to Genetic Algorithm 24
 2.2.3 Brief Introduction to Evolution Strategy 25
 2.2.4 Brief Introduction to Harmony Search 26
 2.2.5 Brief Introduction to Memetic Algorithm 27
4.3 Bilevel Intelligent Optimization Approach

4.3.1 Representation

4.3.2 Initialization

4.3.3 Fitness

4.3.4 Selection

4.3.5 Genetic Operators

4.3.6 Termination Criterion

4.4 Experimental Results and Discussion

4.4.1 Experiment 1

4.4.2 Experiment 2

4.5 Conclusions

References

5 A Bilevel Multi-parent Genetic Optimization Model for Flexible Assembly Line Balancing with Work-Sharing and Workstation Revisiting

5.1 Introduction

5.1.1 Manufacturing Flexibility and Assembly Lines

5.1.2 Assembly Line Balancing Problem

5.1.3 Techniques for Assembly Line Balancing

5.2 Problem Statement

5.2.1 Problem Description and Assumptions

5.2.2 Notations

5.2.3 Mathematical Model

5.3 Multi-parent GA-Based Optimization Approach

5.3.1 Bilevel Multi-parent Genetic Algorithm

5.3.2 Operation Routing

5.4 Experimental Results and Discussion

5.4.1 Validation of GA-Based Optimization Model

5.4.2 Comparison Between GA-Based Optimization Model and Industrial Practice

5.4.3 Effect of Task Proportion on FALB Performance

5.4.4 Effect of Operation Routing on FALB Performance

5.4.5 Discussion on Assumption Relaxation

5.5 Conclusion

References

6 An Evolution Strategy-Based Multi-objective Optimization Model for Order Planning with Multiple Production Departments

6.1 Introduction

6.1.1 Previous Studies in Production Planning

6.1.2 Techniques for Optimization Problems in Production Decision-Making
8 A Harmony Search-Based Hybrid Intelligent Optimization Model for Order Planning with Learning Effects

8.1 Introduction

8.2 Problem Statement

8.2.1 Problem Description and Assumptions

8.2.2 Notations

8.2.3 Mathematical Model

8.3 HS-Based Hybrid Intelligent Optimization Approach for Multi-Site Order Planning Problem

8.3.1 HS-Based Pareto Optimization

8.3.2 Monte Carlo Simulation for Production Uncertainties

8.4 Numerical Experiments

8.4.1 Experimental Design

8.4.2 Experiment Results

8.5 Discussions

8.5.1 Performance Comparison

8.5.2 Effects of Learning Phenomenon on Order Planning Decision-Making

8.6 Conclusions

Appendix

References

9 An RFID- and Cloud-Based Intelligent Decision Support System Architecture for Production Tracking and Scheduling

9.1 Introduction

9.2 Literature Review

9.2.1 Previous Studies in RFID-Based Production Tracking

9.2.2 Production Tracking in Distributed Labor-Intensive Manufacturing

9.2.3 Previous Studies in Production Scheduling

9.3 Problem Statement

9.4 RFID- and Cloud-Based Intelligent Decision Support System Architecture

9.4.1 RFID-Based Real-Time Data Capture (RRDC) Model

9.4.2 Data Analysis and Processing (DAP) Model
11.2 Multivariate Intelligent Decision-Making Model for Sales Forecasting
11.2.1 Data Preparation and Preprocessing
11.2.2 HS-Wrapper-Based Variable Selection
11.2.3 Multivariate Intelligent Forecaster
11.3 Numerical Experiments
11.3.1 Experimental Design
11.3.2 Experiment 1
11.3.3 Experiment 2
11.3.4 Experiment 3
11.3.5 Experiment 4
11.4 Discussion
11.4.1 Further Performance Comparison and Analysis
11.4.2 Performance and Effects of HWVS Module
11.5 Conclusions
References

12 New Directions
12.1 Limitations of Previous Studies
12.2 New Decision-Making Problems in Production and Retail Operations
12.3 New Trends in Intelligent Decision-Making Techniques
12.4 Discussion
References
Intelligent Decision-making Models for Production and Retail Operations
Guo, Z.
2016, XI, 324 p. 84 illus., Hardcover
ISBN: 978-3-662-52679-8