Section I Diagnosis and Treatment: General Principles

1 Clinical Approach to Inborn Errors of Metabolism in Pediatrics

Jean-Marie Saudubray, Angela Garcia Cazorla

1.1 Classification
1.1.1 Pathophysiology
1.1.2 Clinical Presentation
1.2 Antenatal Symptoms
1.3 Neonatal and Early Infancy Presentation (<1 year)
1.3.1 Clinical Presentation
1.3.2 Metabolic Derangements and Diagnostic Tests
1.4 Later Onset Acute and Recurrent Attacks (Late Infancy and Beyond)
1.4.1 Clinical Presentations
1.4.2 Metabolic Derangements and Diagnostic Tests
1.5 Chronic and Progressive Neurological Symptoms (Mental Retardation, Developmental Delay, Epilepsy, Neurological Deterioration and Psychiatric Symptoms)
1.5.1 Diagnostic Approach to Neurological and Mental Deterioration Related to Age
1.5.2 Specific Neurosensorial, Neuropsychological and Neuroradiological Signs and Symptoms (at any Age)
1.5.3 Recommended Laboratory Tests in Neurological Syndromes

2 Inborn Errors of Metabolism in Adults: A Diagnostic Approach to Neurological and Psychiatric Presentations

Fanny Machel, Frédéric Sedel

2.1 Differences Between Paediatric and Adult Phenotypes
2.2 General Approach to IEM in Adulthood
2.2.1 Disorders of Energy Metabolism
2.2.2 Disorders of Lipid Metabolism
2.2.3 Intoxication Syndromes
2.2.4 Disorders of Neurotransmitter Metabolism
2.2.5 Metal Storage Disorders
2.3 Specific Approaches to Neurometabolic Presentations in Adults
2.3.1 Encephalopathies/Comas
2.3.2 Strokes and Pseudostrokes
2.3.3 Movement Disorders
2.3.4 Peripheral Neuropathies

References
Section II Disorders of Carbohydrate Metabolism

5 The Glycogen Storage Diseases and Related Disorders

John Walter, Philippe Labrune, Pascal Laforêt
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1 Clinical Presentation</td>
<td>152</td>
</tr>
<tr>
<td>7.3.2 Metabolic Derangement</td>
<td>152</td>
</tr>
<tr>
<td>7.3.3 Genetics</td>
<td>153</td>
</tr>
<tr>
<td>7.3.4 Diagnostic Tests</td>
<td>153</td>
</tr>
<tr>
<td>7.3.5 Treatment and Prognosis</td>
<td>153</td>
</tr>
<tr>
<td>7.4 Phosphoglycerate Kinase (PGK) Deficiency</td>
<td>153</td>
</tr>
<tr>
<td>7.4.1 Clinical Presentation</td>
<td>153</td>
</tr>
<tr>
<td>7.4.2 Metabolic Derangement</td>
<td>153</td>
</tr>
<tr>
<td>7.4.3 Genetics</td>
<td>153</td>
</tr>
<tr>
<td>7.4.4 Diagnostic Tests</td>
<td>153</td>
</tr>
<tr>
<td>7.4.5 Treatment and Prognosis</td>
<td>153</td>
</tr>
<tr>
<td>7.5 Phosphoglycerate Mutase (PGAM) Deficiency</td>
<td>154</td>
</tr>
<tr>
<td>7.5.1 Clinical Presentation</td>
<td>154</td>
</tr>
<tr>
<td>7.5.2 Metabolic Derangement</td>
<td>154</td>
</tr>
<tr>
<td>7.5.3 Genetics</td>
<td>154</td>
</tr>
<tr>
<td>7.5.4 Diagnostic Tests</td>
<td>154</td>
</tr>
<tr>
<td>7.5.5 Treatment and Prognosis</td>
<td>154</td>
</tr>
<tr>
<td>7.6 Enolase Deficiency</td>
<td>154</td>
</tr>
<tr>
<td>7.6.1 Clinical Presentation</td>
<td>154</td>
</tr>
<tr>
<td>7.6.2 Metabolic Derangement</td>
<td>154</td>
</tr>
<tr>
<td>7.6.3 Genetics</td>
<td>154</td>
</tr>
<tr>
<td>7.6.4 Diagnostic Tests</td>
<td>154</td>
</tr>
<tr>
<td>7.6.5 Treatment and Prognosis</td>
<td>155</td>
</tr>
<tr>
<td>7.7 Lactate Dehydrogenase (LDH) Deficiency</td>
<td>155</td>
</tr>
<tr>
<td>7.7.1 Clinical Presentation</td>
<td>155</td>
</tr>
<tr>
<td>7.7.2 Metabolic Derangement</td>
<td>155</td>
</tr>
<tr>
<td>7.7.3 Genetics</td>
<td>155</td>
</tr>
<tr>
<td>7.7.4 Diagnostic Tests</td>
<td>155</td>
</tr>
<tr>
<td>7.7.5 Treatment and Prognosis</td>
<td>155</td>
</tr>
<tr>
<td>7.8 Glycerol Kinase Deficiency (GKD)</td>
<td>155</td>
</tr>
<tr>
<td>7.8.1 Clinical Presentation</td>
<td>155</td>
</tr>
<tr>
<td>7.8.2 Metabolic Derangement</td>
<td>155</td>
</tr>
<tr>
<td>7.8.3 Genetics</td>
<td>156</td>
</tr>
<tr>
<td>7.8.4 Diagnostic Tests</td>
<td>156</td>
</tr>
<tr>
<td>7.8.5 Treatment and Prognosis</td>
<td>156</td>
</tr>
<tr>
<td>7.9 Ribose-5-Phosphate Isomerase (RPI) Deficiency</td>
<td>156</td>
</tr>
<tr>
<td>7.9.1 Clinical Presentation</td>
<td>156</td>
</tr>
<tr>
<td>7.9.2 Metabolic Derangement</td>
<td>156</td>
</tr>
<tr>
<td>7.9.3 Genetics</td>
<td>157</td>
</tr>
<tr>
<td>7.9.4 Diagnostic Tests</td>
<td>157</td>
</tr>
<tr>
<td>7.9.5 Treatment and Prognosis</td>
<td>157</td>
</tr>
<tr>
<td>7.10 Transaldolase (TALDO) Deficiency</td>
<td>157</td>
</tr>
<tr>
<td>7.10.1 Clinical Presentation</td>
<td>157</td>
</tr>
<tr>
<td>7.10.2 Metabolic Derangement</td>
<td>157</td>
</tr>
<tr>
<td>7.10.3 Genetics</td>
<td>157</td>
</tr>
<tr>
<td>7.10.4 Diagnostic Tests</td>
<td>157</td>
</tr>
<tr>
<td>7.10.5 Treatment and Prognosis</td>
<td>157</td>
</tr>
<tr>
<td>7.11 Transketolase (TKT) Deficiency</td>
<td>158</td>
</tr>
<tr>
<td>7.11.1 Clinical Presentation</td>
<td>158</td>
</tr>
<tr>
<td>7.11.2 Metabolic Derangement</td>
<td>158</td>
</tr>
<tr>
<td>7.11.3 Genetics</td>
<td>158</td>
</tr>
<tr>
<td>7.11.4 Diagnostic Tests</td>
<td>158</td>
</tr>
<tr>
<td>7.11.5 Treatment and Prognosis</td>
<td>158</td>
</tr>
<tr>
<td>7.12 Sedoheptulokinase (SHPK) Deficiency</td>
<td>158</td>
</tr>
<tr>
<td>7.12.1 Clinical Presentation</td>
<td>158</td>
</tr>
<tr>
<td>7.12.2 Metabolic Derangement</td>
<td>159</td>
</tr>
<tr>
<td>7.12.3 Genetics</td>
<td>159</td>
</tr>
</tbody>
</table>
12 Disorders of Mitochondrial Fatty Acid Oxidation & Riboflavin Metabolism

Andrew A.M. Morris, Ute Spiekerkoetter

12.1 Disorders of Mitochondrial Fatty Acid Oxidation

12.2 Clinical Presentations

12.2.1 Fatty Acid Transport Defects

12.2.2 Carnitine Cycle Defects

12.2.3 β-Oxidation Defects

12.2.4 Electron Transfer Defects

12.2.5 Other Potential Defects

12.3 Metabolic Derangement

12.4 Genetics

12.5 Diagnostic Tests

12.5.1 Abnormal Metabolites

12.5.2 In Vitro Studies

12.5.3 Fasting Studies

12.5.4 Prenatal Diagnosis

12.5.5 Newborn Screening

12.6 Treatment and Prognosis

12.6.1 Management of Acute Illness

12.6.2 Long Term Dietary Management

12.6.3 Drug Treatment

12.6.4 Monitoring

12.6.5 Prognosis

12.7 Defects of Riboflavin Transport & Metabolism

12.7.1 Brown-Vialetto-van Laere Syndrome

12.7.2 RFVT1 Deficiency

12.7.3 FAD Synthase and Mitochondrial FAD Transporter Deficiencies

References

13 Disorders of Ketogenesis and Ketolysis

Andrew A.M. Morris

13.1 Ketogenesis Defects

13.1.1 Clinical Presentation

13.1.2 Metabolic Derangement

13.1.3 Genetics

13.1.4 Diagnostic Tests

13.1.5 Treatment and Prognosis

13.2 Defects of Ketone Body Utilization or Transport

13.2.1 Clinical Presentation

13.2.2 Metabolic Derangement

13.2.3 Genetics

13.2.4 Diagnostic Tests

13.2.5 Treatment and Prognosis

13.3 Cytosolic Acetoacetyl-CoA Thiolase Deficiency

13.4 Ketogenic Diets

References

14 Disorders of Oxidative Phosphorylation

Shamima Rahman, Johannes A. Mayr

14.1 Clinical Presentation

14.1.1 Neonatal and Infantile Presentations

14.1.2 Presentation in Childhood and Adolescence

14.1.3 Adult-Onset Disorders

14.2 Metabolic Derangement

14.3 Genetics

14.3.1 Mitochondrial DNA Mutations

14.3.2 Nuclear Gene Defects

References
<table>
<thead>
<tr>
<th>17</th>
<th>Disorders of Tyrosine Metabolism</th>
<th>265</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Hereditary Tyrosinaemia Type I (Hepatorenal Tyrosinaemia)</td>
<td>267</td>
</tr>
<tr>
<td>17.1.1</td>
<td>Clinical Presentation</td>
<td>267</td>
</tr>
<tr>
<td>17.1.2</td>
<td>Metabolic Derangement</td>
<td>267</td>
</tr>
<tr>
<td>17.1.3</td>
<td>Genetics</td>
<td>268</td>
</tr>
<tr>
<td>17.1.4</td>
<td>Diagnostic Tests</td>
<td>268</td>
</tr>
<tr>
<td>17.1.5</td>
<td>Treatment and Prognosis</td>
<td>269</td>
</tr>
<tr>
<td>17.2</td>
<td>Hereditary Tyrosinaemia Type II (Oculocutaneous Tyrosinaemia, Richner-Hanhart Syndrome)</td>
<td>270</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Clinical Presentation</td>
<td>270</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Metabolic Derangement</td>
<td>270</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Genetics</td>
<td>271</td>
</tr>
<tr>
<td>17.2.4</td>
<td>Diagnostic Tests</td>
<td>271</td>
</tr>
<tr>
<td>17.2.5</td>
<td>Treatment and Prognosis</td>
<td>271</td>
</tr>
<tr>
<td>17.3</td>
<td>Hereditary Tyrosinaemia Type III</td>
<td>271</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Clinical Presentation</td>
<td>271</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Metabolic Derangement</td>
<td>271</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Genetics</td>
<td>271</td>
</tr>
<tr>
<td>17.3.4</td>
<td>Diagnostic Tests</td>
<td>272</td>
</tr>
<tr>
<td>17.3.5</td>
<td>Treatment and Prognosis</td>
<td>272</td>
</tr>
<tr>
<td>17.4</td>
<td>Transient Tyrosinaemia</td>
<td>272</td>
</tr>
<tr>
<td>17.5</td>
<td>Alkaptonuria</td>
<td>272</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Clinical Presentation</td>
<td>272</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Metabolic Derangement</td>
<td>272</td>
</tr>
<tr>
<td>17.5.3</td>
<td>Genetics</td>
<td>273</td>
</tr>
<tr>
<td>17.5.4</td>
<td>Diagnostic Tests</td>
<td>273</td>
</tr>
<tr>
<td>17.5.5</td>
<td>Treatment and Prognosis</td>
<td>273</td>
</tr>
<tr>
<td>17.6</td>
<td>Hawkinsinuria</td>
<td>273</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Clinical Presentation</td>
<td>273</td>
</tr>
<tr>
<td>17.6.2</td>
<td>Metabolic Derangement</td>
<td>273</td>
</tr>
<tr>
<td>17.6.3</td>
<td>Genetics</td>
<td>273</td>
</tr>
<tr>
<td>17.6.4</td>
<td>Diagnostic Tests</td>
<td>273</td>
</tr>
<tr>
<td>17.6.5</td>
<td>Treatment and Prognosis</td>
<td>274</td>
</tr>
<tr>
<td>References</td>
<td>274</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18</th>
<th>Branched-chain Organic Acidurias/Acidaemias</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Maple Syrup Urine Disease, Isovaleric Aciduria, Propionic Aciduria, Methylmalonic Aciduria</td>
<td>279</td>
</tr>
<tr>
<td>18.1.1</td>
<td>Clinical Presentation</td>
<td>279</td>
</tr>
<tr>
<td>18.1.2</td>
<td>Metabolic Derangement</td>
<td>281</td>
</tr>
<tr>
<td>18.1.3</td>
<td>Genetics</td>
<td>282</td>
</tr>
<tr>
<td>18.1.4</td>
<td>Diagnostic Tests</td>
<td>283</td>
</tr>
<tr>
<td>18.1.5</td>
<td>Treatment and Prognosis</td>
<td>283</td>
</tr>
<tr>
<td>18.2</td>
<td>3-Methylcrotonyl Glycinuria</td>
<td>288</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Clinical Presentation</td>
<td>288</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Metabolic Derangement</td>
<td>288</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Genetics</td>
<td>288</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Diagnostic Tests</td>
<td>289</td>
</tr>
<tr>
<td>18.2.5</td>
<td>Treatment and Prognosis</td>
<td>289</td>
</tr>
<tr>
<td>18.3</td>
<td>3-Methylglutaconic Aciduria</td>
<td>289</td>
</tr>
<tr>
<td>18.4</td>
<td>Short/ Branched Chain Acyl-CoA Dehydrogenase Deficiency</td>
<td>290</td>
</tr>
<tr>
<td>18.5</td>
<td>2-Methyl-3-Hydroxybutyryl-CoA Dehydrogenase Deficiency</td>
<td>290</td>
</tr>
<tr>
<td>18.6</td>
<td>Isobutyryl-CoA Dehydrogenase Deficiency</td>
<td>290</td>
</tr>
<tr>
<td>18.7</td>
<td>3-Hydroxyisobutyric Aciduria</td>
<td>290</td>
</tr>
<tr>
<td>18.8</td>
<td>Malonyl-CoA Decarboxylase Deficiency</td>
<td>291</td>
</tr>
<tr>
<td>18.9</td>
<td>ACSF3 Deficiency</td>
<td>291</td>
</tr>
<tr>
<td>18.10</td>
<td>Enoyl-CoA Hydratase or ECHS1 Deficiency</td>
<td>291</td>
</tr>
<tr>
<td>References</td>
<td>291</td>
<td></td>
</tr>
</tbody>
</table>
20.7.2 Metabolic Derangement
20.7.3 Genetics
20.7.4 Diagnostic Tests
20.7.5 Treatment and Prognosis

20.8 Isolated Sulfite Oxidase Deficiency
20.8.1 Clinical Presentation
20.8.2 Metabolic Derangement
20.8.3 Genetics
20.8.4 Diagnostic Tests
20.8.5 Treatment and Prognosis

20.9 Ethylmalonic Encephalopathy
20.9.1 Clinical Presentation
20.9.2 Metabolic Derangement
20.9.3 Genetics
20.9.4 Diagnostic Tests
20.9.5 Treatment and Prognosis

References

21 Disorders of Ornithine and Proline Metabolism
Matthias R. Baumgartner, David Valle, Carlo Dionisi-Vici
21.1 Hyperornithinaemia Due to Ornithine Aminotransferase Deficiency (Gyrate Atrophy of the Choroid and Retina)
21.2 Hyperornithinaemia, Hyperammonaemia and Homocitrullinuria (HHH Syndrome)
21.3 Δ1-Pyrroline-5-Carboxylate Synthetase Deficiency
21.4 Δ1-Pyrroline-5-Carboxylate Reductase Deficiency 1 (PYCR1) and 2 (PYCR2)
21.5 Prolidase Deficiency
21.6 Prolidase Deficiency
21.8 Spermine Synthase Deficiency (Snyder Robinson Syndrome)

22 Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism
Georg F. Hoffmann, Stefan Kölker
22.1 Introduction
22.2 Hyperlysinaemia/Saccharopinuria
22.2.1 Clinical Presentation
22.2.2 Metabolic Derangement
22.2.3 Genetics
22.2.4 Diagnostic Tests
22.2.5 Treatment and Prognosis
22.3 Hydroxylysinuria
22.4 2-Amino-/2-Oxoadipic Aciduria
22.4.1 Clinical Presentation
22.4.2 Metabolic Derangement
22.4.3 Genetics
22.4.4 Diagnostic Tests
22.4.5 Treatment and Prognosis
22.5 Glutaric Aciduria Type I
22.5.1 Clinical Presentation
22.5.2 Metabolic Derangement
22.5.3 Genetics
22.5.4 Diagnostic Tests
22.5.5 Treatment and Prognosis
22.6 Glutaric Aciduria Type III
22.6.1 Clinical Presentation
22.6.2 Metabolic Derangement
22.6.3 Genetics
Section VII Disorders of Lipid and Bile Acid Metabolism

31 Inborn Errors of Lipoprotein Metabolism Presenting in Childhood
 Uma Ramaswami, Steve E Humphries
 31.1 Disorders of Low Density Lipoprotein Metabolism .. 443
 31.2 Disorders of Triglyceride (TG) Metabolism .. 445
 31.3 Disorders of High Density Lipoprotein Metabolism .. 453
 31.4 Disorders of Sterol Storage .. 453
 31.5 Conclusion ... 453
 References .. 453

32 Disorders of Isoprenoid/Cholesterol Synthesis
 Hans R. Waterham, Peter T. Clayton
 32.1 Mevalonate Kinase Deficiency .. 457
 32.2 Smith-Lemli-Opitz Syndrome (7-Dehydrocholesterol Reductase Deficiency) 458
 32.3 Sterol Δ8-Δ7 Isomerase Deficiency .. 459
 32.3.1 X-Linked Dominant Chondrodysplasia Punctata 2 or Conrad-Hünermann Syndrome in Females ... 459
 32.3.2 Hemizygous EBP Deficiency in Males .. 460
 32.4 Deficiency of the C4-Demethylase Complex ... 460
 32.4.1 C4-Methyl Sterol Oxidase Deficiency (SMO Deficiency) 460
 32.4.2 Sterol 4α-Carboxylate 3-Dehydrogenase Deficiency 460
 32.5 Desmosterol Reductase Deficiency (Desmosterolosis) .. 461
 32.6 Sterol Δ5-Desaturase Deficiency (Lathosterolosis) ... 461
 32.7 Sterol Δ14-Reduce Deficiency Deficiency (Hydrops – Ectopic Calcification – Moth-eaten (HEM) Skeletal Dysplasia or Greenberg Skeletal Dysplasia) ... 462
 References .. 463

33 Disorders of Bile Acid Synthesis
 Peter T. Clayton
 33.1 3β-Hydroxy-Δ5-C27-Steroid Dehydrogenase Deficiency 467
 33.2 Δ4-3-Oxosteroid 5β-Reductase Deficiency .. 468
 33.3 Cerebrotendinous Xanthomatosis (Sterol 27-Hydroxylase Deficiency) 469
 33.4 α-Methylacyl-CoA Racemase Deficiency .. 471
34 Disorders of Intracellular Triglyceride and Phospholipid Metabolism

34.1 Inborn Errors of the Common Pathway of Acylglycerol and Phospholipid Synthesis

34.1.1 Glycerol-3-phosphate Dehydrogenase 1 (GPD1) Deficiency: Autosomal Recessive Hepatic Steatosis and Hypertri glyceridemia

34.1.2 Glycerol Kinase Deficiency is described in Chapter 7.

34.1.3 1-Acylglycerol-3-Phosphate O-Acyltransferase 2 (AGPAT2) Deficiency: Autosomal Recessive Generalized Congenital Lipodystrophy

34.1.4 Phosphatidic Acid Phosphatase (PAP; LIPIN) Deficiencies

34.1.5 Diacylglycerol Kinase Epsilon (DGKE) Deficiency: Atypical Hemolytic Uremic Syndrome

34.2 Inborn Errors of Cytoplasmic Triglyceride Metabolism

34.2.1 Diacylglycerol O-Acyl Transferase 1 (DGAT1) Deficiency: Congenital Diarrhea

34.2.2 Perilipin 1 Deficiency: Autosomal Dominant Partial Lipodystrophy

34.2.3 Neutral Lipid Storage Diseases (NLSDs): ATGL and CGI-58 Deficiencies

34.2.4 Hormone-Sensitive Lipase (HSL) Deficiency; Insulin Resistance, Diabetes

34.3 Inborn Errors of Phospholipid Biosynthesis

34.4 Choline Kinase β (CHKB) Deficiency: Congenital Muscular Dystrophy, Megacnial Type

34.4.1 Choline-PhosphoCytididylyltransferase α (CCTα) Deficiency: Spondylometaphyseal Dysplasia with Cone-Rod Dystrophy or Congenital Lipodystrophy

34.4.2 PhosphatidylserineSynthase 1 (PS51) Gain of Function (Lenz-Majewski Hyperostotic Dwarfism)

34.4.3 Acylglycerol Kinase (AGK) Deficiency: Myopathy, Hypertrophic Cardiomyopathy and Congenital Cataract (Sengers Syndrome)

34.4.4 Cardiolipin Remodeling Enzyme Deficiency: X-linked Cardiomyopathy and Neutropenia (Barth Syndrome)

34.4.5 SERAC1 Mutation: Methylglutaconic Aciduria, Deafness, Hepatic Involvement, Encephalopathy, and Leigh Syndrome (MEGDHEL Syndrome)

34.4.6 Mitochondrial Calcium Independent Phospholipase A2γ (iPLA2γ): Autosomal Recessive Myopathy, Dystonia and Convulsions (not shown)

34.5 Inborn Errors related to Phospholipid Remodeling

34.5.1 α/β Hydrolase Domain-Containing Protein 12 (ABHD12) Deficiency: Polynuropathy, Hearing loss, Ataxia, Retinitis Pigmentosa and Cataract (PHARC syndrome)

34.5.2 Phospholipase A2 Deficiency (PLA2G6): Autosomal Recessive Infantile Neuroaxonal Dystrophy, Neurodegeneration with Brain Iron Accumulation

34.5.3 Deficiencies of Neuropathy Target Esterase (NTE or PNPLA-6) or Mitochondrial Calcium-independent Phospholipase A2γ (PNPLA6): Peripheral Neuropathy, Spastic Paraplegia, Choreoretinal Degeneration, Hypogonadotropic Hypogonadism, Trichomegaly (SPG9, Boucher-Neuhauser, Gordon-Holms, Oliver-McFarlane, Laurence-Moon syndromes) or Mitochondrial Myopathy with Dystonia

34.5.4 DDHD1 and DDHD2 Mutations: Hereditary Spastic Paraplegias 28 and 45

34.5.5 CYP2U1 Mutation: Spastic Paraplegia with Basal Ganglia Calcification (Hereditary Spastic Paraplegia 56, SPG56)

34.5.6 Inborn Errors of Polyphosphoinositide Metabolism

References
35.2.1 CAD (Carbamoylphosphate Synthetase II, Aspartate Transcarbamylase, Dihydroorotase) Deficiency 498
35.2.2 UMP Synthase Deficiency (Hereditary Orotic Aciduria) 498
35.2.3 Miller syndrome (Dihydroorotate Dehydrogenase Deficiency) 507
35.2.4 Dihydropyrudimidine Dehydrogenase Deficiency 507
35.2.5 Dihydropyrimidinase Deficiency ... 508
35.2.6 Ureidopropionase Deficiency ... 508
35.2.7 Pyrimidine 5'-Nucleotidase Deficiency 508
35.2.8 Cytosolic 5’-Nucleotidase Superactivity 508
35.2.9 Thymidine Phosphorylase Deficiency 508
35.2.10 Cytidine Deaminase Deficiency .. 509
35.2.11 Thymidine Kinase 2 Deficiency ... 509

References .. 509

36 Disorders of Haem Biosynthesis .. 515
Charles Marques Lourenço, Karl E. Anderson

36.1 X-Linked Sideroblastic Anaemia .. 517
36.2 The Porphyrias ... 517
36.2.1 Classification and Diagnosis .. 517
36.3 5-Aminolevulinic Acid Dehydratase Porphyria 519
36.4 Acute Intermittent Porphyria (AIP) ... 519
36.5 Congenital Erythropoietic Porphyria (CEP) (Gunther Disease) 521
36.6 Porphyria Cutanea Tarda (PCT) .. 522
36.7 Hepatoerythropoietic Porphyria .. 523
36.8 Hereditary Coproporphyria and Variegate Porphyria 523
36.9 Erythropoietic Protoporphyria and X-Linked Protoporphyria 524

References .. 525

Section IX Disorders of Metal Transport and Metabolism

37 Disorders in the Transport of Copper, Iron, Magnesium, Manganese, Selenium and Zinc ... 531
Peter M. van Hasselt, Peter Clayton, Roderick H.J. Houwen

37.1 Copper .. 532
37.1.1 Wilson Disease ... 533
37.1.2 Menkes Disease ... 535
37.1.3 Other Copper Storage Disorders .. 536
37.1.4 Other Disturbances of Copper Metabolism with a Low Serum Copper 536
Section X Organelle-Related Disorders: Lysosomes, Peroxisomes, and Golgi and Pre-Golgi Systems

38 Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Cereoid Lipofuscinoses

Marie T. Vanier, Catherine Caillaud, Thierry Levade

38.1 Disorders of Sphingolipid Synthesis

38.1.1 Serine Palmitoyltransferase (Subunit 1 or 2) Deficiency and HSAN1

38.1.2 Defects in Ceramidase Synthases 1 and 2 and Myoclonic Epilepsy

38.1.3 Fatty Acid 2-Hydroxylase Deficiency (SPG35/FAHN)

38.1.4 GM3 Synthase Deficiency and Amish Epilepsy Syndrome

38.1.5 GM2/GD2 Synthase Deficiency (SPG26)

38.1.6 Nonlysosomal β-Glucosidase GBA2 Deficiency: SPG46 and Ataxia

38.1.7 Ceramide Synthase 3 and Ultra-Long Chain Fatty Acid ω-Hydroxylase (CYP4F22) Deficiencies: Autosomal Recessive Congenital Ichthyosis (ARCI)

38.1.8 Mutations in Ceramide Kinase-Like (CERKL) Gene and Retinal Dystrophy

38.1.9 Alkaline Ceramidase 3 (ACER3) Deficiency: Infantile Leukodystrophy

38.2 Sphingolipidoses

38.2.1 Gaucher Disease

38.2.2 Acid Sphingomyelinase-Deficient Niemann-Pick Disease (Type A, Type B and Intermediate Forms)

38.2.3 GM1 Gangliosidosis

38.2.4 GM2 Gangliosidosis

38.2.5 Krabbe Disease

38.2.6 Metachromatic Leukodystrophy

38.2.7 Fabry Disease

38.2.8 Farber Disease / Acid Ceramidase Deficiency

38.2.9 Proasposin Deficiency

38.3 Niemann-Pick Disease Type C

38.3.1 Clinical Presentation

38.3.2 Metabolic Derangement

38.3.3 Genetics

38.3.4 Diagnostic Tests

38.3.5 Treatment and Prognosis

38.4 Neuronal Cereoid Lipofuscinoses

38.4.1 Clinical Presentation

38.4.2 Metabolic Derangement

38.4.3 Genetics
41 Congenital Disorders of Glycosylation, Dolichol and Glycosylphosphatidylinositol Metabolism ... 607
Jaak Jaeken, Eva Morava
41.1 Introduction ... 609
41.2 Congenital Disorders of Protein N-Glycosylation ... 611
41.2.1 Phosphomannomutase 2 Deficiency (PMM2-CDG) ... 611
41.2.2 Mannosephosphate Isomerase Deficiency (MPI-CDG) ... 612
41.2.3 Glucosyltransferase 1 Deficiency (ALG6-CDG) ... 612
41.2.4 Mannosyltransferase 1 Deficiency (ALG1-CDG) ... 613
41.2.5 UDP-GlcNAc: Dol-P-GlcNAc-P Transferase Deficiency (DPAGT1-CDG) ... 613
41.2.6 Golgi α1-2 Mannosidase 1 Deficiency (MAN1B1-CDG) ... 614
41.3 Congenital Disorders of Protein O-Glycosylation ... 614
41.3.1 Progeroid Variant of Ehlers-Danlos Syndrome (B4GALT7-CDG) ... 614
41.3.2 GALNT3 Deficiency (GALNT3-CDG) ... 614
41.3.3 Hereditary Multiple Exostoses (EXT1/EXT2-CDG) ... 614
41.3.4 Cerebro-Ocular Dysplasia-Muscular Dystrophy Syndromes, Types A1, B1, C1/A2, B2, C2 (POMT1/POMT2-CDG) ... 616
41.3.5 Muscle-Eye-Brain Disease, Types A3, B3, C3 (POMGNT1-CDG) ... 616
41.3.6 O-Fucose-Specific β-1,3-Glucosyltransferase Deficiency (B3GALT1-CDG) ... 616
41.4 Defects in Lipid Glycosylation and in Glycosylphosphatidylinositol (GPI) Anchor Biosynthesis ... 616
41.4.1 GM3 Synthase Deficiency (ST3GAL5-CDG) ... 616
41.4.2 GM2 Synthase Deficiency (B4GALNT1-CDG) ... 616
41.4.3 PIGA Deficiency (PIGA-CDG) ... 616
41.5 Defects in Multiple Glycosylation Pathways and in Other Pathways Including Dolicholphosphate Biosynthesis Defects ... 616
41.5.1 Hereditary Inclusion Body Myopathy (GNE-CDG) ... 616
41.5.2 Congenital Myasthenic Syndrome-12 (GFPT1-CDG) ... 617
41.5.3 Steroid 5-α-Reductase Deficiency (SRD5A3-CDG) ... 617
41.5.4 COG6 Deficiency (COG6-CDG) ... 618
41.5.5 Autosomal Recessive Cutis Laxa Type 2 (ATP6V0A2-CDG) ... 620
41.5.6 Phosphoglucomutase 1 Deficiency (PGM1-CDG) ... 620
41.5.7 Golgi Homeostasis Disorders: TMEM199 and CCDC115 Deficiencies ... 620
41.5.8 Manganese and Zinc Transporter Defect: SLC39A8 Deficiency ... 620
41.6 Congenital Disorders of Deglycosylation ... 621
41.6.1 N-glycanase 1 Deficiency ... 621
41.6.2 Lysosomal Storage Disorders ... 621
References ... 621

42 Cystinosis ... 623
Patrick Niaudet
42.1 Infantile Cystinosis ... 624
42.1.1 Clinical Presentation ... 624
42.1.2 Metabolic Derangement ... 626
42.1.3 Genetics ... 626
42.1.4 Diagnostic Tests ... 626
42.1.5 Treatment ... 626
42.2 Late-Onset Cystinosis ... 627
42.3 Ocular Cystinosis ... 628
References ... 628

Section XI Appendix

43 Medications Used in the Treatment of Inborn Errors ... 633
John Walter

Subject Index ... 643
Inborn Metabolic Diseases
Diagnosis and Treatment
Saudubray, J.-M.; Baumgartner, M.; Walter, J. (Eds.)
2016, XXXI, 658 p., Hardcover