Contents

1 Mathematical Formulation of Quantum Systems 1
 1.1 Quantum Systems and Linear Algebra 1
 1.2 State and Measurement in Quantum Systems 5
 1.3 Quantum Two-Level Systems .. 8
 1.4 Composite Systems and Tensor Products 10
 1.5 Matrix Inequalities and Matrix Monotone Functions 15
 1.6 Solutions of Exercises ... 18
 References .. 24

2 Information Quantities and Parameter Estimation in Classical Systems ... 25
 2.1 Information Quantities in Classical Systems 25
 2.1.1 Entropy ... 25
 2.1.2 Relative Entropy .. 27
 2.1.3 Mutual Information 33
 2.1.4 The Independent and Identical Condition
 and Rényi Entropy 36
 2.1.5 Conditional Rényi Entropy 41
 2.2 Geometry of Probability Distribution Family 45
 2.2.1 Inner Product for Random Variables
 and Fisher Information 45
 2.2.2 Bregman Divergence 50
 2.2.3 Exponential Family and Divergence 53
 2.3 Estimation in Classical Systems 56
 2.4 Type Method and Large Deviation Evaluation 61
 2.4.1 Type Method and Sanov’s Theorem 61
 2.4.2 Cramér Theorem and Its Application to Estimation 64
 2.5 Continuity and Axiomatic Approach 71
 2.6 Large Deviation on Sphere ... 77
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>State Evolution and Trace-Preserving Completely Positive Maps</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>5.1 Description of State Evolution in Quantum Systems</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>5.2 Examples of Trace-Preserving Completely Positive Maps</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>5.3 State Evolutions in Quantum Two-Level Systems</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>5.4 Information-Processing Inequalities in Quantum Systems</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>5.5 Entropy Inequalities in Quantum Systems</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>5.6 Conditional Rényi Entropy and Duality</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>5.7 Proof and Construction of Stinespring and Choi–Kraus Representations</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>5.8 Historical Note</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>5.8.1 Completely Positive Map and Quantum Relative Entropy</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>5.8.2 Quantum Relative Rényi entropy</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>5.9 Solutions of Exercises</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>250</td>
</tr>
<tr>
<td>6</td>
<td>Quantum Information Geometry and Quantum Estimation</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>6.1 Inner Products in Quantum Systems</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>6.2 Metric-Induced Inner Products</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>6.3 Geodesics and Divergences</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>6.4 Quantum State Estimation</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>6.5 Large Deviation Evaluation</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>6.6 Multiparameter Estimation</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>6.7 Relative Modular Operator and Quantum f-Relative Entropy</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>6.7.1 Monotonicity Under Completely Positivity</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>6.7.2 Monotonicity Under 2-Positivity</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>6.8 Historical Note</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>6.8.1 Quantum State Estimation</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>6.8.2 Quantum Channel Estimation</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>6.8.3 Geometry of Quantum States</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>6.8.4 Equality Condition for Monotonicity of Relative Entropy</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>6.9 Solutions of Exercises</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>318</td>
</tr>
<tr>
<td>7</td>
<td>Quantum Measurements and State Reduction</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>7.1 State Reduction Due to Quantum Measurement</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>7.2 Uncertainty and Measurement</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>7.2.1 Uncertainties for Observable and Measurement</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>7.2.2 Disturbance</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>7.2.3 Uncertainty Relations</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>7.3 Entropic Uncertainty Relation</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>7.4 Measurements with Negligible State Reduction</td>
<td>342</td>
</tr>
</tbody>
</table>
8 Entanglement and Locality Restrictions .. 357
 8.1 Entanglement and Local Quantum Operations 357
 8.2 Fidelity and Entanglement .. 362
 8.3 Entanglement and Information Quantities 369
 8.4 Entanglement and Majorization 375
 8.5 Distillation of Maximally Entangled States 380
 8.6 Dilution of Maximally Entangled States 387
 8.7 Unified Approach to Distillation and Dilution 391
 8.8 Maximally Correlated State 398
 8.9 Dilution with Zero-Rate Communication 403
 8.10 Discord .. 406
 8.11 State Generation from Shared Randomness 412
 8.12 Positive Partial Transpose (PPT) Operations 418
 8.13 Violation of Superadditivity of Entanglement Formation 426
 8.13.1 Counter Example for Superadditivity of Entanglement Formation 426
 8.13.2 Proof of Theorem 8.14 428
 8.14 Secure Random Number Generation 433
 8.14.1 Security Criteria and Their Evaluation 433
 8.14.2 Proof of Theorem 8.15 436
 8.15 Duality Between Two Conditional Entropies 438
 8.15.1 Recovery of Maximally Entangled State from Evaluation of Classical Information 438
 8.15.2 Duality Between Two Conditional Entropies of Mutually Unbiased Basis 442
 8.16 Examples .. 443
 8.16.1 2×2 System 444
 8.16.2 Werner State 445
 8.16.3 Isotropic State 447
 8.17 Proof of Theorem 8.2 .. 450
 8.18 Proof of Theorem 8.3 .. 454
 8.19 Proof of Theorem 8.8 for Mixed States 455
 8.20 Proof of Theorem 8.9 for Mixed States 456
 8.20.1 Proof of Direct Part 456
 8.20.2 Proof of Converse Part 457
 8.21 Historical Note ... 459
 8.21.1 Entanglement Distillation 459
 8.21.2 Entanglement Dilution and Related Topics 460
 8.21.3 Additivity ... 460
 8.21.4 Security and Related Topics 461
9 Analysis of Quantum Communication Protocols 491
9.1 Quantum Teleportation .. 491
9.2 C-Q Channel Coding with Entangled Inputs 493
9.3 C-Q Channel Coding with Shared Entanglement 501
9.4 Quantum Channel Resolvability 510
9.5 Quantum-Channel Communications with an Eavesdropper 516
9.5.1 C-Q Wiretap Channel 516
9.5.2 Relation to BB84 Protocol 518
9.5.3 Secret Sharing .. 520
9.5.4 Distillation of Classical Secret Key 521
9.5.5 Proof of Direct Part of C-Q Wiretap Channel
Coding Theorem ... 523
9.5.6 Proof of Converse Part of C-Q Wiretap Channel
Coding Theorem .. 525
9.6 Channel Capacity for Quantum-State Transmission 527
9.6.1 Conventional Formulation 527
9.6.2 Proof of Hashing Inequality (8.121) 534
9.6.3 Decoder with Assistance by Local Operations 534
9.7 Examples .. 541
9.7.1 Group Covariance Formulas 541
9.7.2 d-Dimensional Depolarizing Channel 543
9.7.3 Transpose Depolarizing Channel 544
9.7.4 Generalized Pauli Channel 545
9.7.5 PNS Channel .. 545
9.7.6 Erasure Channel ... 546
9.7.7 Phase-Damping Channel 547
9.8 Proof of Theorem 9.3 .. 548
9.9 Historical Note .. 552
9.9.1 Additivity Conjecture 552
9.9.2 Channel Coding with Shared Entanglement 553
9.9.3 Quantum-State Transmission 554
9.10 Solutions of Exercises .. 555
References .. 565

10 Source Coding in Quantum Systems 569
10.1 Four Kinds of Source Coding Schemes
in Quantum Systems ... 570
10.2 Quantum Fixed-Length Source Coding 571
10.3 Construction of a Quantum Fixed-Length Source Code 574
10.4 Universal Quantum Fixed-Length Source Codes 577
10.5 Universal Quantum Variable-Length Source Codes 579
10.6 Mixed-State Case and Bipartite State Generation 580
10.7 Compression with Classical Memory 586
10.8 Compression with Shared Randomness 590
10.9 Relation to Channel Capacities 594
10.10 Proof of Lemma 10.3 ... 597
10.11 Historical Note .. 599
10.12 Solutions of Exercises .. 601
References .. 603

Erratum to: Quantum Information Theory E1
Appendix: Limits and Linear Algebra .. 607
Postface to Japanese version ... 627
Index .. 631
Quantum Information Theory
Mathematical Foundation
Hayashi, M.
2017, XLIII, 636 p. 24 illus., 1 illus. in color., Hardcover
ISBN: 978-3-662-49723-4