Contents

1 Introduction ... 1
 1.1 Background .. 1
 1.2 Case Histories of Pile Failures in Liquefiable Ground 3
 1.2.1 Failure Cases Due to Lateral Effects 3
 1.2.2 Failure Cases Due to Vertical Effects 8
 1.3 Soil Liquefaction ... 10
 1.3.1 Post-liquefaction Shear Deformation Mechanism 10
 1.3.2 Constitutive Modelling of Soil Liquefaction 11
 1.4 Seismic Response of Piles in Liquefiable Ground 13
 1.4.1 Soil-Pile Kinematic Interaction 13
 1.4.2 Structure-Pile Inertial Interaction 14
 1.4.3 Coupling of Kinematic and Inertial Interactions 15
 1.5 Downdrag of Piles in Consolidating Ground 16
 1.5.1 Consolidation Induced Dragload and Downdrag Settlement ... 16
 1.5.2 Post-liquefaction Reconsolidation Induced Dragload and Downdrag Settlement 18
 1.6 Scope of Dissertation 19
References ... 20

2 A Unified Plasticity Model for Large Post-liquefaction Shear Deformation of Sand and Its Numerical Implementation 25
 2.1 Model Formulation in Triaxial Stress Space 26
 2.1.1 Basic Equations 26
 2.1.2 Elastic Moduli .. 27
 2.1.3 State Parameter 27
 2.1.4 Plastic Loading and Load Reversal 28
 2.1.5 Plastic Modulus 28
 2.1.6 Dilatancy ... 29
 2.1.7 Post-liquefaction Shear Deformation 30
2.2 Multiaxial Generalization

- Determined of Model Parameters

2.3 Determination of Model Parameters

2.4 Model Implementation

- **2.4.1** Numerical Treatment for Zero Effective Stress State
- **2.4.2** Stress Integration Scheme
- **2.4.3** Determination of Projection Point on Maximum Stress Ratio Surface
- **2.4.4** Symmetrisation of the Elastic-Plastic Tangent

2.5 Validation of Model Formulation and Implementation

- **2.5.1** Undrained and Drained Triaxial Experiment Simulation
- **2.5.2** Undrained Cyclic Torsional Experiment Simulation
- **2.5.3** VELACS Centrifuge Experiment Simulation

2.6 Summary

References

3 Analysis of Seismic Single Pile Response in Liquefiable Ground

3.1 Centrifuge Test on Single Piles in Liquefiable Ground

3.2 3D FEM Method for Simulation of Piles in Liquefiable Ground

3.3 Test and Simulation Results

- **3.3.1** LCS, Level Ground with Cap and Superstructure
- **3.3.2** ICS, Inclined Ground with Cap and Superstructure
- **3.3.3** LNN and LNS, Level Ground without Cap, without and with Superstructure

3.4 Seismic Response of Single Piles in Liquefiable Ground

- **3.4.1** Major Factors Influencing Pile Responses
- **3.4.2** Role of Inertial and Kinematic Effects
- **3.4.3** Coupling of Inertial and Kinematic Effects

3.5 Summary

References

4 Dragload and Downdrag Settlement of Single Piles
due to Post-liquefaction Reconsolidation

4.1 Calculation Method for Dragload and Downdrag Settlement

- **4.1.1** Fundamental Error in Traditional Neutral Plane Solution
- **4.1.2** Beam on Nonlinear Winkler Foundation Solution
- **4.1.3** Modified Neutral Plane Solution
- **4.1.4** Calculation Method for Post-liquefaction Reconsolidation Process
4.2 Method Validation .. 103
 4.2.1 Simulation of Single Pile in Consolidating Soil 103
 4.2.2 Simulation of Single Pile in Post-liquefaction
 Reconsolidating Soil 106
4.3 Dragload and Downdrag Settlement During Reconsolidation 109
 4.3.1 Liquefiable Ground Without Non-liquefiable Crust 110
 4.3.2 Liquefiable Ground with a Non-liquefiable Crust ... 113
4.4 Summary .. 114
References .. 115

5 Conclusions and Future Work 117
 5.1 Conclusions ... 117
 5.2 Future Work .. 118
Single Piles in Liquefiable Ground
Seismic Response and Numerical Analysis Methods
Wang, R.
2016, XVII, 119 p. 101 illus., 75 illus. in color.,
Hardcover
ISBN: 978-3-662-49661-9