Contents

Introduction .. 1 [1]

Aim and Form of this Lecture Course 1 [1]

The Efforts for “Fusion” .. 2 [2]

First Part: The Simplest Geometric Formations 3 [3]

I. Line segment, Area, Volume as Relative Quantities 5 [3]

 Definition by Determinants; Interpretation of Signs 5 [3]

 Simple Applications; in Particular the Cross-Ratio 8 [6]

 Area of Rectilinear Polygons 10 [7]

 Areas with Curvilinear Boundaries 14 [10]

 Volumes of Polyhedral; the Law of Edges 21 [17]

 One-sided Polyhedra ... 24 [19]

II. The Graßmannian Determinant Principle for the Plane 27 [22]

 Line-bound Vectors ... 28 [23]

 Application in the Statics of Rigid Systems 29 [24]

 Classification of Geometric Quantities Under Transformation
 of the Rectangular Coordinates 31 [26]

 Application of the Classification Principle to the Elementary
 Quantities .. 32 [28]

III. The Graßmannian Principle for Space 37 [31]

 “Linienteil” and “Ebenenteil” 37 [31]

 Application to Statics of Rigid Bodies 39 [33]

 Relations to the Null-System of Möbius 41 [35]

 Geometrical Visualisation of the Null-System 43 [37]

 Connection to the Theory of Screw Movements 46 [40]
IV. Classification of the Elementary Configurations of Space According to Their Behaviour Under Transformation of Rectangular Coordinates

General Remarks About Transformations of Rectangular Coordinate Systems in Space
The Transformation Formulas for Some Elementary Quantities
Couple and Free Plane Quantity as Equivalent Configurations
Free Vectors and Free Plane Quantities
Scalars of First and Second Kind
Missing Uniform Notation for Vector Calculus

V. Higher Configurations
Configurations of Points (Curves, Surfaces, Point Sets)
On the Difference Between Analytic and Synthetic Geometry
Plücker’s Analytical Conception and the Development of the Duality Principle (Straight Line Coordinates)
Graßmann’s Theory of Extension; Higher Dimensional Geometry
Scalar and Vector Fields; Rational Vector Analysis

Second Part: Geometric Transformations
General Remarks About Transformations and Their Analytic Representation
I. Affine Transformations
Analytic Definition and Basic Properties
Application to the Theory of Ellipsoids
Parallel Projection of a Plane upon Another Plane
Axonometric Mapping of Space (Affinity with Vanishing Determinant)
The Fundamental Theorem of Pohlke

II. Projective Transformations
Analytic Definition; Introduction of Homogeneous Coordinates
Geometric Definition: Each Collineation is a Projectivity
Behaviour of Basic Configurations Under Projectivities
Central Projection of Space upon a Plane (Projectivity with Vanishing Determinant)
Relief Perspective
Application of Projecting to Derive Properties of Conic Sections

III. Higher Point Transformations
1. The Transformation by Reciprocal Radii
Peaucellier’s Construction
Stereographic Projection of the Sphere
2. Some More General Map Projections

- **The Mercator Projection**
- **The Tissot Theorems**

3. The Most General Biunique Continuous Point Transformations

- **Analysis Situs**
- **Euler’s Polyhedron Theorem**

IV. Transformations with Change of Space Element

1. **Dualistic Transformations**
2. **Contact Transformations**
3. **Some Examples**
 - Shape of Algebraic Order and Class Curves
 - Application of Contact Transformations to the Theory of Cog Wheels

V. Theory of the Imaginary

- **The Imaginary Circular Points and the Imaginary Spherical Circle**
- **Imaginary Transformation**
- **Staudt’s Interpretation of Conjugate Imaginary Configurations**
- **Staudt’s Interpretation of Individual Imaginary Elements**
- **The Positions of Imaginary Points and Straight Lines**

Third Part: Systematic Discussion of Geometry and Its Foundations

I. The Systematic Discussion

1. **Survey of the Structure of Geometry**
 - Group Theory as a Principle to Systematise Geometry
 - Cayley’s Principle: Projective Geometry is All Geometry
2. **Digression on the Invariant Theory of Linear Substitutions**
 - The Systematics of Invariant Theory
 - Simple Examples
3. **Application of Invariant Theory to Geometry**
 - Interpretation of Invariant Theory in Affine Geometry
 - Interpretation in Projective Geometry
4. **The Systematization of Affine and Metric Geometry Based on Cayley’s Principle**
 - Subsumption of the Basic Concepts of Affine Geometry Under the Projective System
 - Subsumption of the Graßmannian Determinant Principle Under Invariant Theory; Tensors
 - Subsumption of Metric Geometry Under the Projective System
 - Projective Treatment of Triangle Geometry
II. Foundations of Geometry 183 [171]
General Problematic; Relation to Analytic Geometry ... 183 [172]
Hints Regarding the Construction of Projective Geometry,
with Subsequent Connection of Metric Geometry 184 [172]
1. Development of Plane Geometry with Emphasis upon Motions 185 [174]
Constructing Affine Geometry from Parallel Translations .. 186 [175]
Adding Rotations to Construct Metric Geometry 191 [180]
Definitive Establishment of the Terms for Distance
and Angle ... 197 [185]
Classifying the General Terms Area and Length of Curves . 198 [186]
2. Another Foundation of Metric Geometry – the Role
of the Parallel Axiom 200 [188]
Distance, Angle, Congruence as Fundamental Concepts .. 201 [189]
Parallel Axiom and Theory of Parallels
(Non-Euclidean Geometry) 202 [189]
Philosophical Importance of Non-Euclidean Geometry .. 204 [192]
Integration of Non-Euclidean Geometry into the Projective
System ... 206 [194]
General Remarks About Modern Geometric Axiomatics .. 212 [200]
3. Euclid’s Elements 214 [203]
Critical Remarks About the Historical Importance
and Scientific Significance of the Elements 215 [204]
The Content of the 13 Books of Euclid 218 [207]
The Foundation of Geometry in Euclid’s Elements 221 [212]
The Beginning of the First Book 224 [215]
The Lack of “Betweenness” Axioms in the Elements;
the Possibility of the So-Called Geometrical
Sophisms ... 227 [217]
The “Archimedean” Axiom in the Elements; Excursus
About the “Horn-shaped” Angles as an Example
as a System of Quantities Excluded by this Axiom . 230 [220]

Final Chapter: Observations About the Teaching of Geometry . . . 237 [226]
Importance of the Historical Background 237 [226]
Contrasting Modern Requirements 238 [227]
Criticism of the Traditional Teaching Mode 239 [228]

I. The Teaching in England 243 [231]
The Traditional Type of Teaching and the Exams 243 [231]
The Association for the Improvement of Geometrical Teaching .. 244 [232]
Perry and His Tendencies 245 [233]
Some Schoolbooks Considering the Requirements of Reform . 247 [235]
II. The Teaching in France ... 249 [236]
Petrus Ramus and Clairaut .. 249 [237]
Legendre’s Éléments and Their Importance 250 [238]
Excursus on Legendre’s Theory of Parallels 253 [240]
Legendre’s Successors ... 254 [241]
The Reform of 1902 ... 256 [243]

III. The Teaching in Italy ... 259 [245]
The Influence of Cremona .. 259 [245]
Older Geometry Textbooks 259 [246]
New Demands for Increased Rigour; Veronese 261 [247]
The Peano-School .. 262 [248]
Efforts for Reform ... 263 [249]

IV. The Teaching in Germany ... 265 [250]
The Influence of Primary School Teaching (Pestalozzi and Herbart) ... 265 [250]
The Austrian Curriculum of Exner and Bonitz of 1849; Independent Emphasis on Space Intuition 267 [252]
Transmission of These Tendencies to Northern Germany; the Textbooks by Holzmüller 267 [253]
Suggestions by Experimental Psychology 269 [254]
Schopenhauer’s Criticism of Mathematics; Excursus on the Proofs of the Pythagorean Theorem 271 [257]
New Impacts from Higher Education 274 [259]
The Austrian Curriculum of 1900 and the Textbooks by Henrici and Treutlein ... 275 [260]

Appendix I: Complementary Remarks on Some Issues of Elementary Geometry ... 277 [263]
1. Reports in the Enzyklopädie 277 [263]
2. The Classification of Geometrical Construction Tasks ... 277 [264]
3. On the Range of Construction of the Most Common Drawing Instruments ... 278 [265]
4. On the Application of Transformations to Simplify Geometrical Tasks ... 283 [269]
6. On Descriptive Geometry 286 [273]
7. Napier’s Rule and the Pentagramma Mirificum 287 [273]

Appendix II: Additions About Geometry Teaching in the Individual Countries ... 291 [277]
1. England ... 292 [279]
2. France ... 296 [283]
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. The Influence of Méray on Geometry Teaching in France</td>
<td>297</td>
</tr>
<tr>
<td>4. Italy</td>
<td>299</td>
</tr>
<tr>
<td>5. Germany (On the Further Development of the Prussian School Reform)</td>
<td>301</td>
</tr>
<tr>
<td>Name Index</td>
<td>305</td>
</tr>
<tr>
<td>Subject Index</td>
<td>309</td>
</tr>
</tbody>
</table>
Elementary Mathematics from a Higher Standpoint
Volume II: Geometry
Klein, F.
2016, XVI, 315 p. 157 illus., Softcover
ISBN: 978-3-662-49443-1