Contents

1 **Introduction** .. 1
1.1 Necessity for the Fault Diagnosis and Condition Monitoring of Liquid Rocket Engine 1
1.2 History and Development of LRE Fault Diagnostics Technology .. 4
1.3 Development Trend of the LRE Fault Diagnosis 8

2 **Failure Pattern and Corresponding Mechanism Analysis of LRE** .. 11
2.1 Introduction ... 11
2.2 Structure of LRE ... 12
2.3 Failure Pattern Analysis of the LRE 12
2.4 Failure Mechanism Analysis of the LRE 14
2.4.1 Thrust Chamber and Gas Generator 14
2.4.2 Turbo Pump .. 17
2.4.3 Seal Components 26
2.5 Standard Failure Pattern of the LRE 28

3 **Analysis Methods of Failure Model for LRE** .. 37
3.1 Introduction ... 37
3.2 Working Process of LRE 38
3.3 Model of Steady State Process for LRE 39
3.3.1 Analysis of Liquid Flow in the Pipeline 39
3.3.2 Working Characteristic Equation of Engine Parts ... 40
3.3.3 Parameter Balance Model of Engine 46
3.3.4 Fault Characteristic Equation of Engine Components [55, 62–64] .. 48
3.3.5 Steady State Model of the First-Stage Engine 54
3.3.6 Steady State Model of the Second-Stage Engine 54
3.4 Dynamic Model of LRE [55, 62–64] 55
3.4.1 Thrust Chamber .. 55
3.4.2 Gas Generator ... 57
3.4.3 Turbine Pump System ... 58
3.4.4 Liquid Pipeline System 60
3.4.5 Autogenous Pressurization System 64
3.4.6 Dynamic Model of the First-Stage Engine 69
3.4.7 Dynamic Model of the Second-Stage Engine 69

4 Fault Characteristic Analysis of LRE 71
4.1 Characteristic Analysis of Failure Patterns in Steady State . 71
 4.1.1 Numerical Solution of the Steady State Model 72
 4.1.2 Simulation Analysis of Steady State Feature 73
 4.1.3 The Numerical Method Based on the Hopfield Neural Nets . 75
 4.1.4 Analysis of Engine Steady State Fault 78
 4.1.5 Secondary Engine Steady State Fault Analysis Based on Ant Colony Algorithm 81
 4.1.6 Analysis of Engine Fault Feature Based on Evolutionary Calculation 85
 4.1.7 Acquisition of Engine Steady State Failure Mode 99
4.2 Analysis of Dynamic Failure Mode 100
 4.2.1 The Numerical Method for Solving the Dynamic Model of Engine 101
 4.2.2 Analysis of Engine Dynamic Fault 102
4.3 Integrated Fault Analysis 116

5 Fault Diagnosis of LRE Based on ANN 121
5.1 Theory of ANN ... 121
 5.1.1 Basics of ANN ... 122
 5.1.2 BP ANN and Improved Algorithm 123
5.2 Diagnostic Mechanism of ANN 127
5.3 Fuzzy Preprocessing of the Input Data for the ANN 129
5.4 Fault Diagnosis Method Based on BP ANN 130
 5.5 Fault Diagnosis Method Based on RBF ANN 131
 5.5.1 RBF ANN ... 138
 5.5.2 Application Examples 142
 5.5.3 Calculation Results and Analysis 147
5.6 Fault Diagnosis Method Based on Improved ART2 ANN 147
 5.6.1 Selection of no Mentor Learning ANN Model 148
 5.6.2 Basic Structure and Theory of ART ANN 150
 5.6.3 Improved ART2 Algorithm 153
 5.6.4 Implementation of Improved ART2 Algorithm 155
 5.6.5 Fault Diagnosis Examples 157
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>FTART ANN-based Fault Diagnosis Method</td>
<td>158</td>
</tr>
<tr>
<td>5.7.1</td>
<td>FTART Structure and Basic Theory</td>
<td>159</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Improvement and Its Mathematical Description of FTART ANN</td>
<td>160</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Design of FTART ANN</td>
<td>162</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Diagnosis Examples and Analysis for FRART ANN</td>
<td>164</td>
</tr>
<tr>
<td>6</td>
<td>Fault Diagnosis Method Based on Wavelet Transform</td>
<td>165</td>
</tr>
<tr>
<td>6.1</td>
<td>Theory of Wavelet Transform</td>
<td>165</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Basic Theories of Wavelet Analysis [104]</td>
<td>167</td>
</tr>
<tr>
<td>6.2</td>
<td>Fault Diagnosis Based on Wavelet Analysis for LRE</td>
<td>176</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Wavelet Packet Decomposition and Feature Extraction</td>
<td>176</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Time-Series Analysis Method and Its Application</td>
<td>177</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Harmonic Wavelet and Its Application</td>
<td>181</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Abnormal Vibration Monitoring and Diagnosis of Turbo Pump</td>
<td>188</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Sub-synchronous Precession Analysis of Turbo Pump Based on Wavelet Analysis</td>
<td>189</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Fault Diagnosis of LRE Based on Wavelet-ANN</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>Fault Diagnosis Method Based on Artificial Immune System</td>
<td>193</td>
</tr>
<tr>
<td>7.1</td>
<td>Artificial Immune System</td>
<td>193</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Natural Immune System</td>
<td>193</td>
</tr>
<tr>
<td>7.2</td>
<td>Application of Negative Selection Principle to Fault Detection and Diagnosis of LRE</td>
<td>199</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Negative Selection Algorithm</td>
<td>199</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Case Study</td>
<td>201</td>
</tr>
<tr>
<td>7.3</td>
<td>Application of the Clone Selection Principle in Start-up Progress Simulation of LRE</td>
<td>209</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Clone Selection Principle and Algorithm</td>
<td>209</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Case Study</td>
<td>212</td>
</tr>
<tr>
<td>8</td>
<td>Fault Diagnosis Method Based on Fuzzy Theory</td>
<td>219</td>
</tr>
<tr>
<td>8.1</td>
<td>Fuzzy Fault Diagnosis</td>
<td>219</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Basic Theory of the Fuzzy</td>
<td>220</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Fault Diagnosis Based on Fuzzy Theory</td>
<td>221</td>
</tr>
<tr>
<td>8.2</td>
<td>Fault Diagnosis Method Based on Fuzzy Theory</td>
<td>221</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Basic Theory of the Fuzzy Pattern Recognition</td>
<td>222</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Template Method-Based Membership Function Construction and the FPR</td>
<td>224</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Multi-variable Membership Function and the FPR</td>
<td>228</td>
</tr>
</tbody>
</table>
8.3 Fault Diagnosis Method Based on Fuzzy Clustering 232
 8.3.1 Dynamic Clustering Method Based on the Fuzzy
 Equivalence Matrix ... 233
 8.3.2 Clustering Method of Fuzzy ISODATA 235
 8.3.3 Fuzzy Clustering Based on Max—\(\circ \) Transitivity
 and Its Application ... 239

8.4 Fault Diagnosis Method Based on FNN 241
 8.4.1 Fuzzy Neural Network 241
 8.4.2 Fuzzy RBF ANN and Its Application in the Fault
 Diagnosis of LRE .. 246

9 Fault Analysis and Diagnosis Method Based on Statistical
 Learning Theory .. 255
 9.1 Statistical Learning Theory and Support Vector Machine
 [136–140] .. 255
 9.1.1 Machine Learning ... 257
 9.1.2 Statistical Learning Theory 258
 9.1.3 Support Vector Machine 260
 9.1.4 Kernel Function and the Parameter Optimization 262
 9.2 Application of the SVM in the Fault Diagnosis of LRE 266
 9.2.1 Fault Character Analysis and Diagnosis
 of LRE in Steady State Based on SVM 266
 9.2.2 Fault Diagnosis of LRE Based on GA—SVM 271
 9.2.3 Fault Modeling and Analysis of LRE Based
 on SVM ... 272

10 Fault Diagnosis Method Based on Hidden Markov Model 279
 10.1 Fault Diagnosis Method Based on HMM 279
 10.1.1 Basic Ideology of HMM 280
 10.1.2 Basic Algorithm of HMM 283
 10.1.3 The Type of HMM 288
 10.1.4 Improvement Measures of HMM in Practical
 Application .. 289
 10.1.5 A Pump Fault Diagnosis Turbo Based on HMM 293
 10.2 HMM-SVM Hybrid Fault Diagnosis Model and Its
 Application ... 303
 10.2.1 SVM Training .. 304
 10.2.2 HMM-SVM Fault Diagnosis Application Examples ... 304

11 Fault Prediction Methods of Liquid Rocket Engine (LRE) 307
 11.1 Fault Prediction Method Based on Time Series Analysis 308
 11.1.1 Time Series Analysis 308
 11.1.2 Application and Analysis 316
 11.2 Fault Prediction Method Based on Gray Model 317
 11.2.1 Introduction of Gray Model 317
 11.2.2 Basic Mechanism of Gray Model 317
11.2.3 Gray Prediction Method and Its Application in Fault Prediction of LRE 318

11.3 Rocket Engine Fault Prediction Method Based on Neural Network 327
 11.3.1 Multistep Prediction Method for Dynamic Parameters of Rocket Engine Based on BP Network 327
 11.3.2 The Prediction Method for Dynamic of Rocket Engine Based on RBF Network 331
 11.3.3 The Prediction Method for Dynamic of Rocket Engine Based on Elman Network 338

11.4 Rocket Engine Fault Prediction Based on SVM Method 348
 11.4.1 The Regression Estimation Based on Support Vector Machine 349
 11.4.2 Prediction Process and Evaluation Criteria Based on Support Vector Machine 354
 11.4.3 An Example of Liquid Rocket Engine Fault Prediction Based on SVM Method 355

Appendix A: Steady State Fault Model of I-Level ... 361

Appendix B: Steady State Fault Model of II-Level .. 377

Appendix C: Dynamic State Fault Model of I-Level 385

Appendix D: Dynamic State Fault Model of II-Level 389

References .. 395
Failure Characteristics Analysis and Fault Diagnosis for Liquid Rocket Engines
Zhang, W.
2016, XIV, 401 p. 153 illus., 61 illus. in color., Hardcover
ISBN: 978-3-662-49252-9