Contents

9 *Continuous Mappings (General Theory) .. 1
 9.1 Metric Spaces .. 1
 9.1.1 Definition and Examples 1
 9.1.2 Open and Closed Subsets of a Metric Space 5
 9.1.3 Subspaces of a Metric Space 7
 9.1.4 The Direct Product of Metric Spaces 8
 9.1.5 Problems and Exercises 8
 9.2 Topological Spaces ... 9
 9.2.1 Basic Definitions 9
 9.2.2 Subspaces of a Topological Space 13
 9.2.3 The Direct Product of Topological Spaces 13
 9.2.4 Problems and Exercises 14
 9.3 Compact Sets ... 15
 9.3.1 Definition and General Properties of Compact Sets ... 15
 9.3.2 Metric Compact Sets 16
 9.3.3 Problems and Exercises 18
 9.4 Connected Topological Spaces 19
 9.4.1 Problems and Exercises 20
 9.5 Complete Metric Spaces 21
 9.5.1 Basic Definitions and Examples 21
 9.5.2 The Completion of a Metric Space 24
 9.5.3 Problems and Exercises 27
 9.6 Continuous Mappings of Topological Spaces 28
 9.6.1 The Limit of a Mapping 28
 9.6.2 Continuous Mappings 30
 9.6.3 Problems and Exercises 34
 9.7 The Contraction Mapping Principle 34
 9.7.1 Problems and Exercises 40
10 *Differential Calculus from a More General Point of View*

10.1 Normed Vector Spaces
- **10.1.1** Some Examples of Vector Spaces in Analysis 41
- **10.1.2** Norms in Vector Spaces 42
- **10.1.3** Inner Products in Vector Spaces 45
- **10.1.4** Problems and Exercises 48

10.2 Linear and Multilinear Transformations
- **10.2.1** Definitions and Examples 49
- **10.2.2** The Norm of a Transformation 52
- **10.2.3** The Space of Continuous Transformations 55
- **10.2.4** Problems and Exercises 60

10.3 The Differential of a Mapping
- **10.3.1** Mappings Differentiable at a Point 61
- **10.3.2** The General Rules for Differentiation 63
- **10.3.3** Some Examples 64
- **10.3.4** The Partial Derivatives of a Mapping 70
- **10.3.5** Problems and Exercises 71

10.4 The Finite-Increment Theorem and Some Examples of Its Use
- **10.4.1** The Finite-Increment Theorem 74
- **10.4.2** Some Applications of the Finite-Increment Theorem 76
- **10.4.3** Problems and Exercises 80

10.5 Higher-Order Derivatives
- **10.5.1** Definition of the \(n \)th Differential 80
- **10.5.2** Derivative with Respect to a Vector and Computation of the Values of the \(n \)th Differential 82
- **10.5.3** Symmetry of the Higher-Order Differentials 83
- **10.5.4** Some Remarks 85
- **10.5.5** Problems and Exercises 87

10.6 Taylor’s Formula and the Study of Extrema
- **10.6.1** Taylor’s Formula for Mappings 87
- **10.6.2** Methods of Studying Interior Extrema 88
- **10.6.3** Some Examples 90
- **10.6.4** Problems and Exercises 95

10.7 The General Implicit Function Theorem
- **10.7.1** Problems and Exercises 97

11 Multiple Integrals

11.1 The Riemann Integral over an \(n \)-Dimensional Interval
- **11.1.1** Definition of the Integral 109
- **11.1.2** The Lebesgue Criterion for Riemann Integrability 112
- **11.1.3** The Darboux Criterion 116
- **11.1.4** Problems and Exercises 118

11.2 The Integral over a Set
- **11.2.1** Admissible Sets 119
- **11.2.2** The Integral over a Set 120
11.2.3 The Measure (Volume) of an Admissible Set 121
11.2.4 Problems and Exercises 123
11.3 General Properties of the Integral 124
 11.3.1 The Integral as a Linear Functional 124
 11.3.2 Additivity of the Integral 124
 11.3.3 Estimates for the Integral 125
 11.3.4 Problems and Exercises 128
11.4 Reduction of a Multiple Integral to an Iterated Integral 129
 11.4.1 Fubini’s Theorem 129
 11.4.2 Some Corollaries 131
 11.4.3 Problems and Exercises 135
11.5 Change of Variable in a Multiple Integral 137
 11.5.1 Statement of the Problem and Heuristic Derivation
 of the Change of Variable Formula 137
 11.5.2 Measurable Sets and Smooth Mappings 138
 11.5.3 The One-Dimensional Case 140
 11.5.4 The Case of an Elementary Diffeomorphism in \(\mathbb{R}^n \) 142
 11.5.5 Composite Mappings and the Formula for Change
 of Variable .. 144
 11.5.6 Additivity of the Integral and Completion of the Proof
 of the Formula for Change of Variable in an Integral 144
 11.5.7 Corollaries and Generalizations of the Formula
 for Change of Variable in a Multiple Integral 145
 11.5.8 Problems and Exercises 149
11.6 Improper Multiple Integrals 152
 11.6.1 Basic Definitions 152
 11.6.2 The Comparison Test for Convergence of an Improper
 Integral ... 154
 11.6.3 Change of Variable in an Improper Integral 157
 11.6.4 Problems and Exercises 159
12 Surfaces and Differential Forms in \(\mathbb{R}^n \) 163
 12.1 Surfaces in \(\mathbb{R}^n \) 163
 12.1.1 Problems and Exercises 171
 12.2 Orientation of a Surface 172
 12.2.1 Problems and Exercises 178
 12.3 The Boundary of a Surface and Its Orientation 179
 12.3.1 Surfaces with Boundary 179
 12.3.2 Making the Orientations of a Surface and Its Boundary
 Consistent ... 182
 12.3.3 Problems and Exercises 185
 12.4 The Area of a Surface in Euclidean Space 186
 12.4.1 Problems and Exercises 192
 12.5 Elementary Facts About Differential Forms 195
 12.5.1 Differential Forms: Definition and Examples 196
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2 Coordinate Expression of a Differential Form</td>
<td>199</td>
</tr>
<tr>
<td>12.5.3 The Exterior Differential of a Form</td>
<td>202</td>
</tr>
<tr>
<td>12.5.4 Transformation of Vectors and Forms Under Mappings</td>
<td>205</td>
</tr>
<tr>
<td>12.5.5 Forms on Surfaces</td>
<td>209</td>
</tr>
<tr>
<td>12.5.6 Problems and Exercises</td>
<td>209</td>
</tr>
<tr>
<td>13 Line and Surface Integrals</td>
<td>213</td>
</tr>
<tr>
<td>13.1 The Integral of a Differential Form</td>
<td>213</td>
</tr>
<tr>
<td>13.1.1 The Original Problems, Suggestive Considerations, Examples</td>
<td>213</td>
</tr>
<tr>
<td>13.1.2 Definition of the Integral of a Form over an Oriented Surface</td>
<td>219</td>
</tr>
<tr>
<td>13.1.3 Problems and Exercises</td>
<td>223</td>
</tr>
<tr>
<td>13.2 The Volume Element. Integrals of First and Second Kind</td>
<td>228</td>
</tr>
<tr>
<td>13.2.1 The Mass of a Lamina</td>
<td>228</td>
</tr>
<tr>
<td>13.2.2 The Area of a Surface as the Integral of a Form</td>
<td>229</td>
</tr>
<tr>
<td>13.2.3 The Volume Element</td>
<td>230</td>
</tr>
<tr>
<td>13.2.4 Expression of the Volume Element in Cartesian Coordinates</td>
<td>231</td>
</tr>
<tr>
<td>13.2.5 Integrals of First and Second Kind</td>
<td>233</td>
</tr>
<tr>
<td>13.2.6 Problems and Exercises</td>
<td>235</td>
</tr>
<tr>
<td>13.3 The Fundamental Integral Formulas of Analysis</td>
<td>238</td>
</tr>
<tr>
<td>13.3.1 Green’s Theorem</td>
<td>238</td>
</tr>
<tr>
<td>13.3.2 The Gauss–Ostrogradskii Formula</td>
<td>243</td>
</tr>
<tr>
<td>13.3.3 Stokes’ Formula in \mathbb{R}^3</td>
<td>246</td>
</tr>
<tr>
<td>13.3.4 The General Stokes Formula</td>
<td>248</td>
</tr>
<tr>
<td>13.3.5 Problems and Exercises</td>
<td>252</td>
</tr>
<tr>
<td>14 Elements of Vector Analysis and Field Theory</td>
<td>257</td>
</tr>
<tr>
<td>14.1 The Differential Operations of Vector Analysis</td>
<td>257</td>
</tr>
<tr>
<td>14.1.1 Scalar and Vector Fields</td>
<td>257</td>
</tr>
<tr>
<td>14.1.2 Vector Fields and Forms in \mathbb{R}^3</td>
<td>257</td>
</tr>
<tr>
<td>14.1.3 The Differential Operators grad, curl, div, and ∇</td>
<td>260</td>
</tr>
<tr>
<td>14.1.4 Some Differential Formulas of Vector Analysis</td>
<td>263</td>
</tr>
<tr>
<td>14.1.5 *Vector Operations in Curvilinear Coordinates</td>
<td>265</td>
</tr>
<tr>
<td>14.1.6 Problems and Exercises</td>
<td>275</td>
</tr>
<tr>
<td>14.2 The Integral Formulas of Field Theory</td>
<td>276</td>
</tr>
<tr>
<td>14.2.1 The Classical Integral Formulas in Vector Notation</td>
<td>276</td>
</tr>
<tr>
<td>14.2.2 The Physical Interpretation of div, curl, and grad</td>
<td>279</td>
</tr>
<tr>
<td>14.2.3 Other Integral Formulas</td>
<td>283</td>
</tr>
<tr>
<td>14.2.4 Problems and Exercises</td>
<td>286</td>
</tr>
<tr>
<td>14.3 Potential Fields</td>
<td>288</td>
</tr>
<tr>
<td>14.3.1 The Potential of a Vector Field</td>
<td>288</td>
</tr>
<tr>
<td>14.3.2 Necessary Condition for Existence of a Potential</td>
<td>289</td>
</tr>
<tr>
<td>14.3.3 Criterion for a Field to be Potential</td>
<td>290</td>
</tr>
<tr>
<td>14.3.4 Topological Structure of a Domain and Potentials</td>
<td>293</td>
</tr>
</tbody>
</table>
14.3.5 Vector Potential. Exact and Closed Forms 296
14.3.6 Problems and Exercises 299
14.4 Examples of Applications 303
14.4.1 The Heat Equation 303
14.4.2 The Equation of Continuity 305
14.4.3 The Basic Equations of the Dynamics of Continuous
 Media ... 306
14.4.4 The Wave Equation 308
14.4.5 Problems and Exercises 309
15 *Integration of Differential Forms on Manifolds 313
 15.1 A Brief Review of Linear Algebra 313
 15.1.1 The Algebra of Forms 313
 15.1.2 The Algebra of Skew-Symmetric Forms 314
 15.1.3 Linear Mappings of Vector Spaces and the Adjoint
 Mappings of the Conjugate Spaces 317
 15.1.4 Problems and Exercises 319
 15.2 Manifolds .. 321
 15.2.1 Definition of a Manifold 321
 15.2.2 Smooth Manifolds and Smooth Mappings 326
 15.2.3 Orientation of a Manifold and Its Boundary 328
 15.2.4 Partitions of Unity and the Realization of Manifolds
 as Surfaces in \mathbb{R}^n 332
 15.2.5 Problems and Exercises 335
 15.3 Differential Forms and Integration on Manifolds 337
 15.3.1 The Tangent Space to a Manifold at a Point 337
 15.3.2 Differential Forms on a Manifold 340
 15.3.3 The Exterior Derivative 343
 15.3.4 The Integral of a Form over a Manifold 344
 15.3.5 Stokes’ Formula 345
 15.3.6 Problems and Exercises 347
 15.4 Closed and Exact Forms on Manifolds 353
 15.4.1 Poincaré’s Theorem 353
 15.4.2 Homology and Cohomology 356
 15.4.3 Problems and Exercises 360
16 Uniform Convergence and the Basic Operations of Analysis
 on Series and Families of Functions 363
 16.1 Pointwise and Uniform Convergence 363
 16.1.1 Pointwise Convergence 363
 16.1.2 Statement of the Fundamental Problems 364
 16.1.3 Convergence and Uniform Convergence of a Family
 of Functions Depending on a Parameter 366
 16.1.4 The Cauchy Criterion for Uniform Convergence 369
 16.1.5 Problems and Exercises 370
 16.2 Uniform Convergence of Series of Functions 371
16.2.1 Basic Definitions and a Test for Uniform Convergence of a Series .. 371
16.2.2 The Weierstrass M-Test for Uniform Convergence of a Series .. 374
16.2.3 The Abel–Dirichlet Test .. 375
16.2.4 Problems and Exercises ... 379
16.3 Functional Properties of a Limit Function .. 380
 16.3.1 Specifics of the Problem .. 380
 16.3.2 Conditions for Two Limiting Passages to Commute 381
 16.3.3 Continuity and Passage to the Limit 382
 16.3.4 Integration and Passage to the Limit 385
 16.3.5 Differentiation and Passage to the Limit 387
 16.3.6 Problems and Exercises .. 391
16.4 *Compact and Dense Subsets of the Space of Continuous Functions .. 395
 16.4.1 The Arzelà–Ascoli Theorem .. 395
 16.4.2 The Metric Space $C(K, Y)$.. 398
 16.4.3 Stone’s Theorem ... 399
 16.4.4 Problems and Exercises .. 401
17 Integrals Depending on a Parameter .. 405
 17.1 Proper Integrals Depending on a Parameter 405
 17.1.1 The Concept of an Integral Depending on a Parameter 405
 17.1.2 Continuity of an Integral Depending on a Parameter 406
 17.1.3 Differentiation of an Integral Depending on a Parameter 407
 17.1.4 Integration of an Integral Depending on a Parameter 410
 17.1.5 Problems and Exercises .. 411
 17.2 Improper Integrals Depending on a Parameter 413
 17.2.1 Uniform Convergence of an Improper Integral with Respect to a Parameter .. 413
 17.2.2 Limiting Passage Under the Sign of an Improper Integral and Continuity of an Improper Integral Depending on a Parameter .. 420
 17.2.3 Differentiation of an Improper Integral with Respect to a Parameter .. 423
 17.2.4 Integration of an Improper Integral with Respect to a Parameter .. 425
 17.2.5 Problems and Exercises .. 430
 17.3 The Eulerian Integrals .. 433
 17.3.1 The Beta Function ... 433
 17.3.2 The Gamma Function .. 435
 17.3.3 Connection Between the Beta and Gamma Functions 438
 17.3.4 Examples .. 439
 17.3.5 Problems and Exercises .. 441
 17.4 Convolution of Functions and Elementary Facts About Generalized Functions .. 444
17.4.1 Convolution in Physical Problems (Introductory Considerations) ... 444
17.4.2 General Properties of Convolution .. 447
17.4.3 Approximate Identities and the Weierstrass Approximation Theorem 450
17.4.4 *Elementary Concepts Involving Distributions ... 456
17.4.5 Problems and Exercises ... 466
17.5 Multiple Integrals Depending on a Parameter ... 471
 17.5.1 Proper Multiple Integrals Depending on a Parameter 472
 17.5.2 Improper Multiple Integrals Depending on a Parameter 472
 17.5.3 Improper Integrals with a Variable Singularity .. 474
 17.5.4 *Convolution, the Fundamental Solution, and Generalized Functions in the Multidimensional Case 478
 17.5.5 Problems and Exercises ... 488

18 Fourier Series and the Fourier Transform .. 493
 18.1 Basic General Concepts Connected with Fourier Series 493
 18.1.1 Orthogonal Systems of Functions ... 493
 18.1.2 Fourier Coefficients and Fourier Series ... 499
 18.1.3 *An Important Source of Orthogonal Systems of Functions in Analysis .. 510
 18.1.4 Problems and Exercises ... 513
 18.2 Trigonometric Fourier Series ... 520
 18.2.1 Basic Types of Convergence of Classical Fourier Series 520
 18.2.2 Investigation of Pointwise Convergence of a Trigonometric Fourier Series .. 524
 18.2.3 Smoothness of a Function and the Rate of Decrease of the Fourier Coefficients .. 534
 18.2.4 Completeness of the Trigonometric System ... 539
 18.2.5 Problems and Exercises ... 545
 18.3 The Fourier Transform .. 553
 18.3.1 Representation of a Function by Means of a Fourier Integral 553
 18.3.2 The Connection of the Differential and Asymptotic Properties of a Function and Its Fourier Transform 566
 18.3.3 The Main Structural Properties of the Fourier Transform 569
 18.3.4 Examples of Applications .. 574
 18.3.5 Problems and Exercises ... 579

19 Asymptotic Expansions ... 587
 19.1 Asymptotic Formulas and Asymptotic Series .. 589
 19.1.1 Basic Definitions ... 589
 19.1.2 General Facts About Asymptotic Series ... 594
 19.1.3 Asymptotic Power Series ... 598
 19.1.4 Problems and Exercises ... 600
 19.2 The Asymptotics of Integrals (Laplace’s Method) .. 603
Contents

19.2.1 The Idea of Laplace’s Method .. 603
19.2.2 The Localization Principle for a Laplace Integral 606
19.2.3 Canonical Integrals and Their Asymptotics 608
19.2.4 The Principal Term of the Asymptotics of a Laplace Integral ... 612
19.2.5 *Asymptotic Expansions of Laplace Integrals 614
19.2.6 Problems and Exercises .. 625

Topics and Questions for Midterm Examinations 633
1 Series and Integrals Depending on a Parameter 633
2 Problems Recommended as Midterm Questions 634
3 Integral Calculus (Several Variables) 635
4 Problems Recommended for Studying the Midterm Topics 637

Examination Topics ... 639
1 Series and Integrals Depending on a Parameter 639
2 Integral Calculus (Several Variables) 640

Examination Problems (Series and Integrals Depending on a Parameter) ... 643

Intermediate Problems (Integral Calculus of Several Variables) ... 645

Appendix A Series as a Tool (Introductory Lecture) 647
A.1 Getting Ready .. 647
A.1.1 The Small Bug on the Rubber Rope 647
A.1.2 Integral and Estimation of Sums 648
A.1.3 From Monkeys to Doctors of Science Altogether in 10^6 Years ... 648
A.2 The Exponential Function .. 648
A.2.1 Power Series Expansion of the Functions exp, sin, cos 648
A.2.2 Exit to the Complex Domain and Euler’s Formula 649
A.2.3 The Exponential Function as a Limit 649
A.2.4 Multiplication of Series and the Basic Property of the Exponential Function ... 649
A.2.5 Exponential of a Matrix and the Role of Commutativity 650
A.2.6 Exponential of Operators and Taylor’s Formula 650
A.3 Newton’s Binomial ... 651
A.3.1 Expansion in Power Series of the Function $(1 + x)^\alpha$ 651
A.3.2 Integration of a Series and Expansion of $\ln(1 + x)$ 651
A.3.3 Expansion of the Functions $(1 + x^2)^{-1}$ and $\arctan x$ 651
A.3.4 Expansion of $(1 + x)^{-1}$ and Computing Curiosities 652
A.4 Solution of Differential Equations ... 652
A.4.1 Method of Undetermined Coefficients 652
A.4.2 Use of the Exponential Function 652
A.5 The General Idea About Approximation and Expansion 653
A.5.1 The Meaning of a Positional Number System. Irrational Numbers ... 653
Mathematical Analysis II
Zorich, V.A.
2016, XX, 720 p. 42 illus. in color., Hardcover
ISBN: 978-3-662-48991-8