Contents

9 *Continuous Mappings (General Theory) ... 1
 9.1 Metric Spaces ... 1
 9.1.1 Definition and Examples ... 1
 9.1.2 Open and Closed Subsets of a Metric Space 5
 9.1.3 Subspaces of a Metric Space 7
 9.1.4 The Direct Product of Metric Spaces 8
 9.1.5 Problems and Exercises .. 8
 9.2 Topological Spaces .. 9
 9.2.1 Basic Definitions .. 9
 9.2.2 Subspaces of a Topological Space 13
 9.2.3 The Direct Product of Topological Spaces 13
 9.2.4 Problems and Exercises ... 14
 9.3 Compact Sets .. 15
 9.3.1 Definition and General Properties of Compact Sets 15
 9.3.2 Metric Compact Sets ... 16
 9.3.3 Problems and Exercises ... 18
 9.4 Connected Topological Spaces .. 19
 9.4.1 Problems and Exercises ... 20
 9.5 Complete Metric Spaces .. 21
 9.5.1 Basic Definitions and Examples 21
 9.5.2 The Completion of a Metric Space 24
 9.5.3 Problems and Exercises ... 27
 9.6 Continuous Mappings of Topological Spaces 28
 9.6.1 The Limit of a Mapping .. 28
 9.6.2 Continuous Mappings ... 30
 9.6.3 Problems and Exercises ... 34
 9.7 The Contraction Mapping Principle 34
 9.7.1 Problems and Exercises ... 40
10 *Differential Calculus from a More General Point of View*
10.1 Normed Vector Spaces
10.1.1 Some Examples of Vector Spaces in Analysis
10.1.2 Norms in Vector Spaces
10.1.3 Inner Products in Vector Spaces
10.1.4 Problems and Exercises
10.2 Linear and Multilinear Transformations
10.2.1 Definitions and Examples
10.2.2 The Norm of a Transformation
10.2.3 The Space of Continuous Transformations
10.2.4 Problems and Exercises
10.3 The Differential of a Mapping
10.3.1 Mappings Differentiable at a Point
10.3.2 The General Rules for Differentiation
10.3.3 Some Examples
10.3.4 The Partial Derivatives of a Mapping
10.3.5 Problems and Exercises
10.4 The Finite-Increment Theorem and Some Examples of Its Use
10.4.1 The Finite-Increment Theorem
10.4.2 Some Applications of the Finite-Increment Theorem
10.4.3 Problems and Exercises
10.5 Higher-Order Derivatives
10.5.1 Definition of the \(n \)th Differential
10.5.2 Derivative with Respect to a Vector and Computation of the Values of the \(n \)th Differential
10.5.3 Symmetry of the Higher-Order Differentials
10.5.4 Some Remarks
10.5.5 Problems and Exercises
10.6 Taylor’s Formula and the Study of Extrema
10.6.1 Taylor’s Formula for Mappings
10.6.2 Methods of Studying Interior Extrema
10.6.3 Some Examples
10.6.4 Problems and Exercises
10.7 The General Implicit Function Theorem
10.7.1 Problems and Exercises

11 Multiple Integrals
11.1 The Riemann Integral over an \(n \)-Dimensional Interval
11.1.1 Definition of the Integral
11.1.2 The Lebesgue Criterion for Riemann Integrability
11.1.3 The Darboux Criterion
11.1.4 Problems and Exercises
11.2 The Integral over a Set
11.2.1 Admissible Sets
11.2.2 The Integral over a Set
11.2.3 The Measure (Volume) of an Admissible Set
11.2.4 Problems and Exercises

11.3 General Properties of the Integral
11.3.1 The Integral as a Linear Functional
11.3.2 Additivity of the Integral
11.3.3 Estimates for the Integral
11.3.4 Problems and Exercises

11.4 Reduction of a Multiple Integral to an Iterated Integral
11.4.1 Fubini’s Theorem
11.4.2 Some Corollaries
11.4.3 Problems and Exercises

11.5 Change of Variable in a Multiple Integral
11.5.1 Statement of the Problem and Heuristic Derivation of the Change of Variable Formula
11.5.2 Measurable Sets and Smooth Mappings
11.5.3 The One-Dimensional Case
11.5.4 The Case of an Elementary Diffeomorphism in \(\mathbb{R}^n \)
11.5.5 Composite Mappings and the Formula for Change of Variable
11.5.6 Additivity of the Integral and Completion of the Proof of the Formula for Change of Variable in an Integral
11.5.7 Corollaries and Generalizations of the Formula for Change of Variable in a Multiple Integral
11.5.8 Problems and Exercises

11.6 Improper Multiple Integrals
11.6.1 Basic Definitions
11.6.2 The Comparison Test for Convergence of an Improper Integral
11.6.3 Change of Variable in an Improper Integral
11.6.4 Problems and Exercises

12 Surfaces and Differential Forms in \(\mathbb{R}^n \)
12.1 Surfaces in \(\mathbb{R}^n \)
12.1.1 Problems and Exercises
12.2 Orientation of a Surface
12.2.1 Problems and Exercises
12.3 The Boundary of a Surface and Its Orientation
12.3.1 Surfaces with Boundary
12.3.2 Making the Orientations of a Surface and Its Boundary Consistent
12.3.3 Problems and Exercises
12.4 The Area of a Surface in Euclidean Space
12.4.1 Problems and Exercises
12.5 Elementary Facts About Differential Forms
12.5.1 Differential Forms: Definition and Examples

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2 Coordinate Expression of a Differential Form</td>
<td>199</td>
</tr>
<tr>
<td>12.5.3 The Exterior Differential of a Form</td>
<td>202</td>
</tr>
<tr>
<td>12.5.4 Transformation of Vectors and Forms Under Mappings</td>
<td>205</td>
</tr>
<tr>
<td>12.5.5 Forms on Surfaces</td>
<td>209</td>
</tr>
<tr>
<td>12.5.6 Problems and Exercises</td>
<td>209</td>
</tr>
<tr>
<td>13 Line and Surface Integrals</td>
<td>213</td>
</tr>
<tr>
<td>13.1 The Integral of a Differential Form</td>
<td>213</td>
</tr>
<tr>
<td>13.1.1 The Original Problems, Suggestive Considerations, Examples</td>
<td>213</td>
</tr>
<tr>
<td>13.1.2 Definition of the Integral of a Form over an Oriented Surface</td>
<td>219</td>
</tr>
<tr>
<td>13.1.3 Problems and Exercises</td>
<td>223</td>
</tr>
<tr>
<td>13.2 The Volume Element. Integrals of First and Second Kind</td>
<td>228</td>
</tr>
<tr>
<td>13.2.1 The Mass of a Lamina</td>
<td>228</td>
</tr>
<tr>
<td>13.2.2 The Area of a Surface as the Integral of a Form</td>
<td>229</td>
</tr>
<tr>
<td>13.2.3 The Volume Element</td>
<td>230</td>
</tr>
<tr>
<td>13.2.4 Expression of the Volume Element in Cartesian Coordinates</td>
<td>231</td>
</tr>
<tr>
<td>13.2.5 Integrals of First and Second Kind</td>
<td>233</td>
</tr>
<tr>
<td>13.2.6 Problems and Exercises</td>
<td>235</td>
</tr>
<tr>
<td>13.3 The Fundamental Integral Formulas of Analysis</td>
<td>238</td>
</tr>
<tr>
<td>13.3.1 Green’s Theorem</td>
<td>238</td>
</tr>
<tr>
<td>13.3.2 The Gauss–Ostrogradskii Formula</td>
<td>243</td>
</tr>
<tr>
<td>13.3.3 Stokes’ Formula in \mathbb{R}^3</td>
<td>246</td>
</tr>
<tr>
<td>13.3.4 The General Stokes Formula</td>
<td>248</td>
</tr>
<tr>
<td>13.3.5 Problems and Exercises</td>
<td>252</td>
</tr>
<tr>
<td>14 Elements of Vector Analysis and Field Theory</td>
<td>257</td>
</tr>
<tr>
<td>14.1 The Differential Operations of Vector Analysis</td>
<td>257</td>
</tr>
<tr>
<td>14.1.1 Scalar and Vector Fields</td>
<td>257</td>
</tr>
<tr>
<td>14.1.2 Vector Fields and Forms in \mathbb{R}^3</td>
<td>257</td>
</tr>
<tr>
<td>14.1.3 The Differential Operators grad, curl, div, and ∇</td>
<td>260</td>
</tr>
<tr>
<td>14.1.4 Some Differential Formulas of Vector Analysis</td>
<td>263</td>
</tr>
<tr>
<td>14.1.5 *Vector Operations in Curvilinear Coordinates</td>
<td>265</td>
</tr>
<tr>
<td>14.1.6 Problems and Exercises</td>
<td>275</td>
</tr>
<tr>
<td>14.2 The Integral Formulas of Field Theory</td>
<td>276</td>
</tr>
<tr>
<td>14.2.1 The Classical Integral Formulas in Vector Notation</td>
<td>276</td>
</tr>
<tr>
<td>14.2.2 The Physical Interpretation of div, curl, and grad</td>
<td>279</td>
</tr>
<tr>
<td>14.2.3 Other Integral Formulas</td>
<td>283</td>
</tr>
<tr>
<td>14.2.4 Problems and Exercises</td>
<td>286</td>
</tr>
<tr>
<td>14.3 Potential Fields</td>
<td>288</td>
</tr>
<tr>
<td>14.3.1 The Potential of a Vector Field</td>
<td>288</td>
</tr>
<tr>
<td>14.3.2 Necessary Condition for Existence of a Potential</td>
<td>289</td>
</tr>
<tr>
<td>14.3.3 Criterion for a Field to be Potential</td>
<td>290</td>
</tr>
<tr>
<td>14.3.4 Topological Structure of a Domain and Potentials</td>
<td>293</td>
</tr>
</tbody>
</table>
14.3.5 Vector Potential. Exact and Closed Forms 296
14.3.6 Problems and Exercises 299
14.4 Examples of Applications 303
14.4.1 The Heat Equation 303
14.4.2 The Equation of Continuity 305
14.4.3 The Basic Equations of the Dynamics of Continuous
 Media .. 306
14.4.4 The Wave Equation 308
14.4.5 Problems and Exercises 309

15 *Integration of Differential Forms on Manifolds 313
15.1 A Brief Review of Linear Algebra 313
15.1.1 The Algebra of Forms 313
15.1.2 The Algebra of Skew-Symmetric Forms 314
15.1.3 Linear Mappings of Vector Spaces and the Adjoint
 Mappings of the Conjugate Spaces 317
15.1.4 Problems and Exercises 319
15.2 Manifolds ... 321
15.2.1 Definition of a Manifold 321
15.2.2 Smooth Manifolds and Smooth Mappings 326
15.2.3 Orientation of a Manifold and Its Boundary 328
15.2.4 Partitions of Unity and the Realization of Manifolds
 as Surfaces in \(\mathbb{R}^n \) 332
15.2.5 Problems and Exercises 335
15.3 Differential Forms and Integration on Manifolds 337
15.3.1 The Tangent Space to a Manifold at a Point 337
15.3.2 Differential Forms on a Manifold 340
15.3.3 The Exterior Derivative 343
15.3.4 The Integral of a Form over a Manifold 344
15.3.5 Stokes’ Formula 345
15.3.6 Problems and Exercises 347
15.4 Closed and Exact Forms on Manifolds 353
15.4.1 Poincaré’s Theorem 353
15.4.2 Homology and Cohomology 356
15.4.3 Problems and Exercises 360

16 Uniform Convergence and the Basic Operations of Analysis
 on Series and Families of Functions 363
16.1 Pointwise and Uniform Convergence 363
16.1.1 Pointwise Convergence 363
16.1.2 Statement of the Fundamental Problems 364
16.1.3 Convergence and Uniform Convergence of a Family
 of Functions Depending on a Parameter 366
16.1.4 The Cauchy Criterion for Uniform Convergence 369
16.1.5 Problems and Exercises 370
16.2 Uniform Convergence of Series of Functions 371
16.2.1 Basic Definitions and a Test for Uniform Convergence of a Series ... 371
16.2.2 The Weierstrass M-Test for Uniform Convergence of a Series ... 374
16.2.3 The Abel–Dirichlet Test .. 375
16.2.4 Problems and Exercises .. 379
16.3 Functional Properties of a Limit Function .. 380
 16.3.1 Specifics of the Problem ... 380
 16.3.2 Conditions for Two Limiting Passages to Commute 381
 16.3.3 Continuity and Passage to the Limit 382
 16.3.4 Integration and Passage to the Limit 385
 16.3.5 Differentiation and Passage to the Limit 387
 16.3.6 Problems and Exercises .. 391
16.4 *Compact and Dense Subsets of the Space of Continuous Functions 395
 16.4.1 The Arzelà–Ascoli Theorem ... 395
 16.4.2 The Metric Space $C(K, Y)$... 398
 16.4.3 Stone’s Theorem .. 399
 16.4.4 Problems and Exercises .. 401
17 Integrals Depending on a Parameter .. 405
 17.1 Proper Integrals Depending on a Parameter .. 405
 17.1.1 The Concept of an Integral Depending on a Parameter 405
 17.1.2 Continuity of an Integral Depending on a Parameter 406
 17.1.3 Differentiation of an Integral Depending on a Parameter 407
 17.1.4 Integration of an Integral Depending on a Parameter 410
 17.1.5 Problems and Exercises .. 411
 17.2 Improper Integrals Depending on a Parameter .. 413
 17.2.1 Uniform Convergence of an Improper Integral with Respect to a Parameter .. 413
 17.2.2 Limiting Passage Under the Sign of an Improper Integral and Continuity of an Improper Integral Depending on a Parameter .. 420
 17.2.3 Differentiation of an Improper Integral with Respect to a Parameter .. 423
 17.2.4 Integration of an Improper Integral with Respect to a Parameter .. 425
 17.2.5 Problems and Exercises .. 430
 17.3 The Eulerian Integrals .. 433
 17.3.1 The Beta Function .. 433
 17.3.2 The Gamma Function .. 435
 17.3.3 Connection Between the Beta and Gamma Functions 438
 17.3.4 Examples ... 439
 17.3.5 Problems and Exercises .. 441
 17.4 Convolution of Functions and Elementary Facts About Generalized Functions .. 444
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.1 Convolution in Physical Problems (Introductory Considerations)</td>
<td>444</td>
</tr>
<tr>
<td>17.4.2 General Properties of Convolution</td>
<td>447</td>
</tr>
<tr>
<td>17.4.3 Approximate Identities and the Weierstrass Approximation Theorem</td>
<td>450</td>
</tr>
<tr>
<td>17.4.4 *Elementary Concepts Involving Distributions</td>
<td>456</td>
</tr>
<tr>
<td>17.4.5 Problems and Exercises</td>
<td>466</td>
</tr>
<tr>
<td>17.5 Multiple Integrals Depending on a Parameter</td>
<td>471</td>
</tr>
<tr>
<td>17.5.1 Proper Multiple Integrals Depending on a Parameter</td>
<td>472</td>
</tr>
<tr>
<td>17.5.2 Improper Multiple Integrals Depending on a Parameter</td>
<td>472</td>
</tr>
<tr>
<td>17.5.3 Improper Integrals with a Variable Singularity</td>
<td>474</td>
</tr>
<tr>
<td>17.5.4 *Convolution, the Fundamental Solution, and Generalized Functions in the Multidimensional Case</td>
<td>478</td>
</tr>
<tr>
<td>17.5.5 Problems and Exercises</td>
<td>488</td>
</tr>
<tr>
<td>18 Fourier Series and the Fourier Transform</td>
<td>493</td>
</tr>
<tr>
<td>18.1 Basic General Concepts Connected with Fourier Series</td>
<td>493</td>
</tr>
<tr>
<td>18.1.1 Orthogonal Systems of Functions</td>
<td>493</td>
</tr>
<tr>
<td>18.1.2 Fourier Coefficients and Fourier Series</td>
<td>499</td>
</tr>
<tr>
<td>18.1.3 *An Important Source of Orthogonal Systems of Functions in Analysis</td>
<td>510</td>
</tr>
<tr>
<td>18.1.4 Problems and Exercises</td>
<td>513</td>
</tr>
<tr>
<td>18.2 Trigonometric Fourier Series</td>
<td>520</td>
</tr>
<tr>
<td>18.2.1 Basic Types of Convergence of Classical Fourier Series</td>
<td>520</td>
</tr>
<tr>
<td>18.2.2 Investigation of Pointwise Convergence of a Trigonometric Fourier Series</td>
<td>524</td>
</tr>
<tr>
<td>18.2.3 Smoothness of a Function and the Rate of Decrease of the Fourier Coefficients</td>
<td>534</td>
</tr>
<tr>
<td>18.2.4 Completeness of the Trigonometric System</td>
<td>539</td>
</tr>
<tr>
<td>18.2.5 Problems and Exercises</td>
<td>545</td>
</tr>
<tr>
<td>18.3 The Fourier Transform</td>
<td>553</td>
</tr>
<tr>
<td>18.3.1 Representation of a Function by Means of a Fourier Integral</td>
<td>553</td>
</tr>
<tr>
<td>18.3.2 The Connection of the Differential and Asymptotic Properties of a Function and Its Fourier Transform</td>
<td>566</td>
</tr>
<tr>
<td>18.3.3 The Main Structural Properties of the Fourier Transform</td>
<td>569</td>
</tr>
<tr>
<td>18.3.4 Examples of Applications</td>
<td>574</td>
</tr>
<tr>
<td>18.3.5 Problems and Exercises</td>
<td>579</td>
</tr>
<tr>
<td>19 Asymptotic Expansions</td>
<td>587</td>
</tr>
<tr>
<td>19.1 Asymptotic Formulas and Asymptotic Series</td>
<td>589</td>
</tr>
<tr>
<td>19.1.1 Basic Definitions</td>
<td>589</td>
</tr>
<tr>
<td>19.1.2 General Facts About Asymptotic Series</td>
<td>594</td>
</tr>
<tr>
<td>19.1.3 Asymptotic Power Series</td>
<td>598</td>
</tr>
<tr>
<td>19.1.4 Problems and Exercises</td>
<td>600</td>
</tr>
<tr>
<td>19.2 The Asymptotics of Integrals (Laplace’s Method)</td>
<td>603</td>
</tr>
</tbody>
</table>
19.2.1 The Idea of Laplace’s Method 603
19.2.2 The Localization Principle for a Laplace Integral 606
19.2.3 Canonical Integrals and Their Asymptotics 608
19.2.4 The Principal Term of the Asymptotics of a Laplace Integral ... 612
19.2.5 *Asymptotic Expansions of Laplace Integrals 614
19.2.6 Problems and Exercises 625

Topics and Questions for Midterm Examinations 633
1 Series and Integrals Depending on a Parameter 633
2 Problems Recommended as Midterm Questions 634
3 Integral Calculus (Several Variables) 635
4 Problems Recommended for Studying the Midterm Topics 637

Examination Topics .. 639
1 Series and Integrals Depending on a Parameter 639
2 Integral Calculus (Several Variables) 640

Examination Problems (Series and Integrals Depending on a Parameter) 643
Intermediate Problems (Integral Calculus of Several Variables) 645

Appendix A Series as a Tool (Introductory Lecture) 647
A.1 Getting Ready ... 647
A.1.1 The Small Bug on the Rubber Rope 647
A.1.2 Integral and Estimation of Sums 648
A.1.3 From Monkeys to Doctors of Science Altogether in 10^6 Years ... 648
A.2 The Exponential Function 648
A.2.1 Power Series Expansion of the Functions exp, sin, cos 648
A.2.2 Exit to the Complex Domain and Euler’s Formula 649
A.2.3 The Exponential Function as a Limit 649
A.2.4 Multiplication of Series and the Basic Property of the Exponential Function 649
A.2.5 Exponential of a Matrix and the Role of Commutativity 650
A.2.6 Exponential of Operators and Taylor’s Formula 650
A.3 Newton’s Binomial 651
A.3.1 Expansion in Power Series of the Function $(1 + x)^a$ 651
A.3.2 Integration of a Series and Expansion of $\ln(1 + x)$ 651
A.3.3 Expansion of the Functions $(1 + x^2)^{-1}$ and $\arctan x$ 651
A.3.4 Expansion of $(1 + x)^{-1}$ and Computing Curiosities 652
A.4 Solution of Differential Equations 652
A.4.1 Method of Undetermined Coefficients 652
A.4.2 Use of the Exponential Function 652
A.5 The General Idea About Approximation and Expansion 653
A.5.1 The Meaning of a Positional Number System. Irrational Numbers ... 653
Mathematical Analysis II
Zorich, V.A.
2016, XX, 720 p. 42 illus. in color., Hardcover
ISBN: 978-3-662-48991-8