Contents

1 Introduction ... 1
 1.1 Overview ... 1
 1.2 Research on Status of Vehicle State Estimation 3
 1.2.1 Estimation of Longitudinal Vehicle Velocity 4
 1.2.2 Estimation of Side Slip Angle 7
 1.2.3 Yaw Rate Estimation 11
 1.2.4 Estimation of Tire Lateral Force 11
 1.2.5 Estimation of Tire Vertical Force 13
 1.2.6 Estimation of Mass and Gradient 15
 1.3 Research Status of Coordinated Control 17
 1.3.1 Lateral Control Target 17
 1.3.2 Driving Force Control Allocation 23
 1.3.3 Motor Discrepancy Compensation 27
 1.4 Main Study Contents of This Dissertation 28
References .. 31

2 State Estimation and Coordinated Control System 37
 2.1 Structural Design of the System 37
 2.2 Technological Difficulties and Key Points 42

3 State Estimation of Distributed Electric Vehicles 45
 3.1 Mass Estimation of Full Vehicle Extraction Based
 on High Frequency Information 45
 3.1.1 Analysis on Decoupling of Mass and Gradient 46
 3.1.2 Mass Estimation by Recursive Least Square Method ... 48
 3.2 Gradient Estimation Based on Multi-method Fusion 50
 3.2.1 Gradient Estimation Based on Dynamics 50
 3.2.2 Gradient Estimation Based on Kinematics 52
 3.2.3 Fusion of Kinematics and Dynamics 53
3.3 Vertical Force Estimation of Tire Based on Multi-information Infusion ... 53
 3.3.1 Estimation of Roll Angle and Roll Rate of Vehicle Body ... 54
 3.3.2 Analysis on Dynamic Axle Load Transfer 56

3.4 Estimation of Vehicle Motion State and Lateral Force Based on UPF ... 57
 3.4.1 Design of Unscented Particle Filter ... 58
 3.4.2 Analysis on Non-linear Vehicle Dynamic Model 65
 3.4.3 Analysis on Magic Formula Tire Model 70
 3.4.4 Analysis on Dynamic Tire Model ... 74
 3.4.5 Calibration of Inertial Sensor ... 74
 3.4.6 Self-adaptive Adjustment of Measurement Noise 79

3.5 Brief Summary ... 80

References ... 81

4 Coordinated Control of Distributed Electric Vehicles 85
 4.1 Determination of Vehicle Dynamic Demand Target 86
 4.1.1 Determination of Desired Longitudinal Driving Force 86
 4.1.2 Lateral Control Target Based on Non-linear Model 87
 4.1.3 Feedforward Control Based on Non-linear Vehicle Model ... 88
 4.1.4 Design of Expected Vehicle Response Model 90
 4.1.5 Optimum Feedback Control Based on LQR 90
 4.1.6 Adjusting of Weight Coefficient of Lateral Control Target ... 92

 4.2 Control Allocation ... 95
 4.2.1 Design of Optimum Objective Function for Control Allocation ... 95
 4.2.2 Establishment of Constraint Conditions of Control Model ... 99
 4.2.3 Solution of Driving Force Allocation Based on QP 104

 4.3 Motor Property Compensation Control .. 105
 4.3.1 Analysis on Motor Response Properties 106
 4.3.2 Self-Adaptive Motor Property Control 108

 4.4 Brief Summary ... 111

References ... 112

5 Simulation Verification on State Estimation and Coordinated Control ... 115
 5.1 Development of Simulation Platform .. 115
 5.1.1 Development of CarSim and Simulink Joint Simulation Platform ... 115
 5.1.2 Design of Overall Structure of Simulation Platform 117
5.2 Simulation of State Estimation

5.2.1 Simulation for Mass Estimation Based on High-Frequency Information Extraction

5.2.2 Algorithm Simulation for Gradient Estimation Based on Multi-method Fusion

5.2.3 Algorithm Simulation for Vertical Force Estimation Based on Multi-information Fusion

5.2.4 Simulation for Vehicle Motion State and Lateral Force Estimation Based on Unscented Particle Filter

5.3 Simulation of Coordinated Control Algorithm

5.3.1 Simulation of Motor Property Compensation Control Algorithm

5.3.2 Simulation of Driving Force Control Allocation Algorithm

5.3.3 Simulation of Determination Algorithm for Vehicle Dynamic Target

5.4 Brief Summary

References

6 Experimental Verification of State Estimation and Coordinated Control

6.1 Experiment Platform of Distributed Electric Vehicle

6.2 Experiment of State Estimation System

6.2.1 Experiment of Mass Estimation Based on High-Frequency Information Extraction

6.2.2 Experiment of Gradient Estimation Based on Multi-method Fusion

6.2.3 Experiment of Vehicle Motion State Estimation Based on Unscented Particle Filter

6.3 Experiment of Coordinated Control

6.3.1 Experiment of Motor Property Compensation Control

6.3.2 Experiment of Control Allocation

6.3.3 Experiment of Vehicle Dynamic Demand Target Determination

6.4 Brief Summary

References

7 Conclusions
State Estimation and Coordinated Control for Distributed Electric Vehicles

Chu, W.

2016, XVIII, 187 p. 74 illus., 11 illus. in color., Hardcover

ISBN: 978-3-662-48706-8