Contents

1 Introduction ... 1
 1.1 Motivation for SDM ... 1
 1.1.1 Superfluous Spatial Data 2
 1.1.2 Hazards from Spatial Data 4
 1.1.3 Attempts to Utilize Data 6
 1.1.4 Proposal of SDM 8
 1.2 The State of the Art of SDM 9
 1.2.1 Academic Activities 9
 1.2.2 Theoretical Techniques 10
 1.2.3 Applicable Fields 11
 1.3 Bottleneck of SDM ... 13
 1.3.1 Excessive Spatial Data 13
 1.3.2 High-Dimensional Spatial Data 13
 1.3.3 Polluted Spatial Data 14
 1.3.4 Uncertain Spatial Data 16
 1.3.5 Mining Differences 17
 1.3.6 Problems to Represent the Discovered Knowledge .. 17
 1.3.7 Monograph Contents and Structures 18
 1.4 Benefits to a Reader ... 20

References .. 20

2 SDM Principles .. 23
 2.1 SDM Concepts ... 23
 2.1.1 SDM Characteristics 23
 2.1.2 Understanding SDM from Different Views 25
 2.1.3 Distinguishing SDM from Related Subjects 26
 2.1.4 SDM Pyramid .. 27
 2.1.5 Web SDM .. 29
 2.2 From Spatial Data to Spatial Knowledge 30
 2.2.1 Spatial Numerical 30
 2.2.2 Spatial Data ... 31
 2.2.3 Spatial Concept 31

References .. 20
<p>| 2.2.4 | Spatial Information | 32 |
| 2.2.5 | Spatial Knowledge | 33 |
| 2.2.6 | Unified Action | 34 |
| 2.3 | SDM Space | 35 |
| 2.3.1 | Attribute Space | 35 |
| 2.3.2 | Feature Space | 35 |
| 2.3.3 | Conceptual Space | 36 |
| 2.3.4 | Discovery State Space | 36 |
| 2.4 | SDM View | 38 |
| 2.4.1 | SDM User | 38 |
| 2.4.2 | SDM Method | 39 |
| 2.4.3 | SDM Application | 39 |
| 2.4.4 | SDM Hierarchy | 40 |
| 2.4.5 | SDM Granularity | 42 |
| 2.4.6 | SDM Scale | 43 |
| 2.4.7 | Discovery Mechanism | 43 |
| 2.5 | Spatial Knowledge to Discover | 45 |
| 2.5.1 | General Geometric Rule and Spatial Association Rule | 45 |
| 2.5.2 | Spatial Characteristics Rule and Discriminate Rule | 48 |
| 2.5.3 | Spatial Clustering Rule and Classification Rule | 48 |
| 2.5.4 | Spatial Predictable Rule and Serial Rule | 49 |
| 2.5.5 | Spatial Exception or Outlier | 50 |
| 2.6 | Spatial Knowledge Representation | 51 |
| 2.6.1 | Natural Language | 51 |
| 2.6.2 | Conversion Between Quantitative Data and Qualitative Concept | 52 |
| 2.6.3 | Spatial Knowledge Measurement | 53 |
| 2.6.4 | Spatial Rules Plus Exceptions | 54 |
| References | 55 |
| 3 | SDM Data Source | 57 |
| 3.1 | Contents and Characteristics of Spatial Data | 57 |
| 3.1.1 | Spatial Objects | 57 |
| 3.1.2 | Contents of Spatial Data | 58 |
| 3.1.3 | Characteristics of Spatial Data | 60 |
| 3.1.4 | Diversity of Spatial Data | 61 |
| 3.1.5 | Spatial Data Fusion | 62 |
| 3.1.6 | Seamless Organization of Spatial Data | 64 |
| 3.2 | Spatial Data Acquisition | 65 |
| 3.2.1 | Point Acquisition | 66 |
| 3.2.2 | Area Acquisition | 67 |
| 3.2.3 | Mobility Acquisition | 69 |
| 3.3 | Spatial Data Formats | 71 |
| 3.3.1 | Vector Data | 72 |
| 3.3.2 | Raster Data | 72 |
| 3.3.3 | Vector-Raster Data | 72 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Spatial Data Model</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1 Hierarchical Model and Network Model</td>
<td>76</td>
</tr>
<tr>
<td>3.4.2 Relational Model</td>
<td>76</td>
</tr>
<tr>
<td>3.4.3 Object-Oriented Model</td>
<td>78</td>
</tr>
<tr>
<td>3.5 Spatial Databases</td>
<td>81</td>
</tr>
<tr>
<td>3.5.1 Surveying and Mapping Database</td>
<td>81</td>
</tr>
<tr>
<td>3.5.2 DEM Database with Hierarchy</td>
<td>83</td>
</tr>
<tr>
<td>3.5.3 Image Pyramid</td>
<td>84</td>
</tr>
<tr>
<td>3.6 Spatial Data Warehouse</td>
<td>86</td>
</tr>
<tr>
<td>3.6.1 Data Warehouse</td>
<td>87</td>
</tr>
<tr>
<td>3.6.2 Spatial Data Cubes</td>
<td>87</td>
</tr>
<tr>
<td>3.6.3 Spatial Data Warehouse for Data Mining</td>
<td>89</td>
</tr>
<tr>
<td>3.7 National Spatial Data Infrastructure</td>
<td>90</td>
</tr>
<tr>
<td>3.7.1 American National Spatial Data Infrastructure</td>
<td>90</td>
</tr>
<tr>
<td>3.7.2 Geospatial System of Great Britain</td>
<td>96</td>
</tr>
<tr>
<td>3.7.3 German Authoritative Topographic-Cartographic Information System</td>
<td>96</td>
</tr>
<tr>
<td>3.7.4 Canadian National Topographic Data Base (NTDB)</td>
<td>97</td>
</tr>
<tr>
<td>3.7.5 Australian Land and Geographic Information System</td>
<td>98</td>
</tr>
<tr>
<td>3.7.6 Japanese Geographic Information System</td>
<td>98</td>
</tr>
<tr>
<td>3.7.7 Asia-Pacific Spatial Data Infrastructure</td>
<td>99</td>
</tr>
<tr>
<td>3.7.8 European Spatial Data Infrastructure</td>
<td>100</td>
</tr>
<tr>
<td>3.8 China’s National Spatial Data Infrastructure</td>
<td>102</td>
</tr>
<tr>
<td>3.8.1 CNSDI Necessity and Possibility</td>
<td>102</td>
</tr>
<tr>
<td>3.8.2 CNSDI Contents</td>
<td>102</td>
</tr>
<tr>
<td>3.8.3 CNGDF of CNSDI</td>
<td>104</td>
</tr>
<tr>
<td>3.8.4 CSDTS of CNSDI</td>
<td>105</td>
</tr>
<tr>
<td>3.9 From GGDI to Big Data</td>
<td>107</td>
</tr>
<tr>
<td>3.9.1 GGDI</td>
<td>107</td>
</tr>
<tr>
<td>3.9.2 Digital Earth</td>
<td>109</td>
</tr>
<tr>
<td>3.9.3 Smart Planet</td>
<td>110</td>
</tr>
<tr>
<td>3.9.4 Big Data</td>
<td>111</td>
</tr>
<tr>
<td>3.10 Spatial Data as a Service</td>
<td>113</td>
</tr>
<tr>
<td>References</td>
<td>117</td>
</tr>
<tr>
<td>4 Spatial Data Cleaning</td>
<td>119</td>
</tr>
<tr>
<td>4.1 Problems in Spatial Data</td>
<td>119</td>
</tr>
<tr>
<td>4.1.1 Polluted Spatial Data</td>
<td>120</td>
</tr>
<tr>
<td>4.1.2 Observation Errors in Spatial Data</td>
<td>123</td>
</tr>
<tr>
<td>4.1.3 Model Errors on Spatial Data</td>
<td>126</td>
</tr>
<tr>
<td>4.2 The State of the Art</td>
<td>129</td>
</tr>
<tr>
<td>4.2.1 Stages of Spatial Data Error Processing</td>
<td>129</td>
</tr>
<tr>
<td>4.2.2 The Underdevelopment of Spatial Data Cleaning</td>
<td>131</td>
</tr>
</tbody>
</table>
4.3 Characteristics and Contents of Spatial Data Cleaning 133
4.3.1 Fundamental Characteristics 133
4.3.2 Essential Contents 133
4.4 Systematic Error Cleaning 134
4.4.1 Direct Compensation Method 135
4.4.2 Indirect Compensation Method 136
4.5 Stochastic Error Cleaning 137
4.5.1 Function Model 137
4.5.2 Random Model 137
4.5.3 Estimation Equation 138
4.5.4 Various Special Circumstances 139
4.6 Gross Error Cleaning 142
4.6.1 The Reliability of the Adjustment System 143
4.6.2 Data Snooping 145
4.6.3 The Iteration Method with Selected Weights 145
4.6.4 Iteration with the Selected Weights from Robust Estimation .. 146
4.6.5 Iteration Supervised by Posterior Variance Estimation 149
4.7 Graphic and Image Cleaning 151
4.7.1 The Correction of Radiation Deformation 151
4.7.2 The Correction of Geometric Deformation 154
4.7.3 A Case of Image Cleaning 155

References .. 155

5 Methods and Techniques in SDM 157
5.1 Crisp Set Theory .. 157
5.1.1 Probability Theory 157
5.1.2 Evidence Theory 159
5.1.3 Spatial Statistics 160
5.1.4 Spatial Clustering 161
5.1.5 Spatial Analysis 161
5.2 Extended Set Theory 162
5.2.1 Fuzzy Sets ... 163
5.2.2 Rough Sets ... 164
5.3 Bionic Method .. 165
5.3.1 Artificial Neural Network 165
5.3.2 Genetic Algorithms 166
5.4 Others ... 167
5.4.1 Rule Induction 167
5.4.2 Decision Trees 169
5.4.3 Visualization Techniques 169
5.5 Discussion .. 169
5.5.1 Comparisons 170
5.5.2 Usability .. 170

References .. 171
6 Data Field

6.1 From a Physical Field to a Data Field ... 175
 6.1.1 Field in Physical Space ... 176
 6.1.2 Field in Data Space .. 177
6.2 Fundamental Definitions of Data Fields ... 178
 6.2.1 Necessary Conditions .. 178
 6.2.2 Mathematical Model .. 179
 6.2.3 Mass .. 179
 6.2.4 Unit Potential Function ... 180
 6.2.5 Impact Factor ... 181
6.3 Depiction of Data Field .. 182
 6.3.1 Field Lines .. 182
 6.3.2 Equipotential Line (Surface) ... 182
 6.3.3 Topological Cluster .. 184

References ... 185

7 Cloud Model

7.1 Definition and Property .. 187
 7.1.1 Cloud and Cloud Drops ... 187
 7.1.2 Properties ... 188
 7.1.3 Integrating Randomness and Fuzziness ... 188
7.2 The Numerical Characteristics of a Cloud .. 189
7.3 The Types of Cloud Models .. 190
7.4 Cloud Generator .. 192
 7.4.1 Forward Cloud Generator ... 192
 7.4.2 Backward Cloud Generator .. 194
 7.4.3 Precondition Cloud Generator .. 196
7.5 Uncertainty Reasoning .. 196
 7.5.1 One-Rule Reasoning .. 197
 7.5.2 Multi-rule Reasoning ... 198

References ... 201

8 GIS Data Mining

8.1 Spatial Association Rule Mining ... 203
 8.1.1 The Mining Process of Association Rule .. 204
 8.1.2 Association Rule Mining with Apriori Algorithm 205
 8.1.3 Association Rule Mining with Concept Lattice 207
 8.1.4 Association Rule Mining with a Cloud Model 211
8.2 Spatial Distribution Rule Mining with Inductive Learning 215
8.3 Rough Set-Based Decision and Knowledge Discovery 222
 8.3.1 Attribute Importance .. 223
 8.3.2 Urban Temperature Data Mining ... 224
8.4 Spatial Clustering ... 231
 8.4.1 Hierarchical Clustering with Data Fields .. 233
 8.4.2 Fuzzy Comprehensive Clustering ... 235
 8.4.3 Mathematical Morphology Clustering .. 243
8.5 Landslide Monitoring .. 245
 8.5.1 SDM Views of Landslide Monitoring Data Mining 245
 8.5.2 Pan-Concept Hierarchy Tree 248
 8.5.3 Numerical Characters and Rules 248
 8.5.4 Rules Plus Exceptions 253
References ... 255

9 Remote Sensing Image Mining ... 257
 9.1 RS Image Preprocessing ... 257
 9.1.1 Rough Set-Based Image Filter 258
 9.1.2 Rough Set-Based Image Enhancement 258
 9.2 RS Image Classification .. 260
 9.2.1 Inductive Learning-Based Image Classification 260
 9.2.2 Rough Set-Based Image Classification 264
 9.2.3 Rough Set-Based Thematic Extraction 267
 9.3 RS Image Retrieval ... 268
 9.3.1 Features for Image Retrieval 268
 9.3.2 Semivariogram-Based Parameter to Describe Image Similarity 269
 9.3.3 Image Retrieval for Detecting Train Deformation 271
 9.4 Facial Expression Image Mining 274
 9.4.1 Cloud Model-Based Facial Expression Identification . 275
 9.4.2 Data Field-Based Human Facial Expression Recognition .. 278
 9.5 Brightness of Nighttime Light Images as a Proxy 281
 9.5.1 Brightness of Nighttime Lights As a Proxy for Freight Traffic 282
 9.5.2 Evaluating the Syrian Crisis with Nighttime Light Images .. 284
 9.5.3 Nighttime Light Dynamics in the Belt and Road 288
 9.6 Spatiotemporal Video Data Mining 290
 9.6.1 Technical Difficulties in Spatiotemporal Video Data Mining .. 291
 9.6.2 Intelligent Video Data Compression and Cloud Storage .. 292
 9.6.3 Content-Based Video Retrieval 292
 9.6.4 Video Data Mining Under Spatiotemporal Distribution ... 293
References ... 296

10 SDM Systems .. 299
 10.1 GISDBMiner for GIS Data 299
 10.2 RSImageMiner for Image Data 300
 10.3 Spatiotemporal Video Data Mining 304
 10.4 EveryData ... 305
References ... 308
Spatial Data Mining
Theory and Application
Li, D.; Wang, S.; Li, D.
2015, XXVII, 308 p. 103 illus., 81 illus. in color.,
Hardcover
ISBN: 978-3-662-48536-1