Contents

1 Background and Introduction .. 1
 1.1 Background .. 1
 1.2 Accomplishments and Present Research Status 4
 1.2.1 Premixed Flame .. 5
 1.2.2 Research of Dynamics and Mechanisms of Premixed
 Flame Propagation in Tubes 16
 1.2.3 Research of Combustion and Explosion Safety
 in Utilization of Hydrogen Energy 21
 1.3 Scientific Issues and Research Objectives of the Thesis 25
 1.4 Research Content and Organization of the Thesis 27
References .. 28

2 Experiments of Premixed Hydrogen–Air Flame Propagation
 in Ducts .. 35
 2.1 Introduction .. 35
 2.2 Experimental Setup and Methods 35
 2.2.1 Combustion Tube .. 36
 2.2.2 Gas Mixture Preparation and Filling System 36
 2.2.3 High-Voltage Ignition System 37
 2.2.4 High-Speed Photography System 38
 2.2.5 Schlieren Optics System 39
 2.2.6 Pressure Transducer 40
 2.2.7 Data Acquisition Device 40
 2.2.8 Synchronization System 41
 2.3 Experiment Procedure and Initial Conditions 42
 2.3.1 Methodology ... 42
 2.3.2 Procedure .. 42
 2.3.3 Initial Parameters .. 42
 2.4 Experimental Results and Discussion 43
 2.4.1 Hydrogen–Air Flame Propagation in Half-Open Tubes
 .. 43
 2.4.2 Hydrogen–Air Flame Propagation in Closed Tubes ... 45
2.4.3 Behaviors and Characteristics of Distorted Tulip Flames ... 47
2.4.4 Comparisons of Distorted Tulip Flame to Classical Tulip Flame. 49
2.4.5 Effects of Gravity ... 52
2.4.6 Effects of Equivalence Ratio .. 54
2.4.7 Effects of Opening Ratio ... 58
2.5 Summary ... 66
References ... 67

3 Numerical Simulations of Dynamics of Premixed Hydrogen-Air Flames Propagating in Ducts. 71
3.1 Introduction ... 71
3.2 Models and Methods. .. 73
 3.2.1 Physical Model .. 73
 3.2.2 Mathematical Model and Governing Equations. 74
 3.2.3 Combustion Modeling ... 77
3.3 Numerical Results and Discussion .. 83
 3.3.1 Results Based on Thickened Flame Technique and Comparisons to Experiments 83
 3.3.2 LES Calculations Using Burning Velocity Model and Comparisons to Experiments 92
3.4 Summary ... 101
References ... 103

4 Theoretical Analysis of Premixed Hydrogen–Air Flame Propagation in Ducts ... 107
4.1 Introduction ... 107
4.2 Evolution of Premixed Flame in a Duct 108
4.3 Factors Influencing the Flame Properties 109
 4.3.1 Influence of Fuel Properties ... 110
 4.3.2 Influence of Mixture Composition 110
 4.3.3 Influence of Pressure and Temperature 110
 4.3.4 Influence of Impurities ... 111
 4.3.5 Influence of Ignition Energy ... 111
4.4 Theoretical Analysis of Premixed Hydrogen–Air Flame in the Duct ... 112
 4.4.1 Empirical Model ... 112
 4.4.2 Theoretical Model and Results 113
4.5 Comparisons Between Experiments, Numerical Simulations and Theoretical Predictions, and the Combustion Regime ... 116
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Effects of Wall Friction</td>
<td>118</td>
</tr>
<tr>
<td>4.7 Summary</td>
<td>123</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
</tr>
<tr>
<td>5 Mechanisms of Flame Deformations in the Premixed Hydrogen–Air Flame Propagation</td>
<td>127</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>5.2 Interactions Between Flame and Pressure Waves</td>
<td>128</td>
</tr>
<tr>
<td>5.3 Formation Mechanism of Tulip Flame—Interactions of Flame with Flow</td>
<td>131</td>
</tr>
<tr>
<td>5.4 Formation Mechanisms of Distorted Tulip Flames—Interactions Between Flame, Pressure Waves, and Flow</td>
<td>134</td>
</tr>
<tr>
<td>5.4.1 Interactions of Flame Front with the Vortex</td>
<td>134</td>
</tr>
<tr>
<td>5.4.2 Taylor Instabilities</td>
<td>138</td>
</tr>
<tr>
<td>5.5 Summary</td>
<td>141</td>
</tr>
<tr>
<td>References</td>
<td>142</td>
</tr>
<tr>
<td>6 Conclusions and Further Work</td>
<td>145</td>
</tr>
<tr>
<td>6.1 Summary</td>
<td>145</td>
</tr>
<tr>
<td>6.2 Main Conclusions</td>
<td>145</td>
</tr>
<tr>
<td>6.3 Future Research</td>
<td>148</td>
</tr>
<tr>
<td>Reference</td>
<td>149</td>
</tr>
</tbody>
</table>
Experimental and Numerical Study of Dynamics of Premixed Hydrogen-Air Flames Propagating in Ducts
Xiao, H.
2016, XX, 149 p. 71 illus., 62 illus. in color., Hardcover
ISBN: 978-3-662-48377-0