Contents

9 Hamilton’s Principle and Some Other Variational Methods 1
 9.1 Hamilton’s Principle .. 2
 9.2 Flexural Vibrations of Slender Beams 4
 9.3 Equation of Motion for Honeycomb Beams in Flexure 7
 9.4 Plates with Constrained Viscoelastic Layer 14
 9.5 Timoshenko Beams .. 20
 9.6 Mindlin Plates ... 21
 9.7 Cylindrical Shells .. 26
 9.8 Lagrange’s Equation ... 32
 9.9 Garlekin’s Method .. 33
 9.10 An Example Using Garlekin’s Method 36
Problems .. 39

10 Structural Coupling Between Simple Systems 41
 10.1 Introduction .. 41
 10.2 Coupled Mass–Spring Systems 43
 10.3 Coupled Systems with Losses 47
 10.4 Example ... 49
 10.5 Rubber Mounts, Some Material Parameters 53
 10.6 Wave Propagation in Rubber Mounts, Approximate Solutions .. 58
 10.7 Equivalent Stiffness of Simple Mounts—Approximate Methods .. 61
 10.8 Static Deflection of Cylindrical Rubber Mounts 65
 10.9 Wave Propagation in Circular Rods, Exact Solutions 66
 10.10 Measurements of Effective Stiffness of Mounts 75
 10.11 Structural Coupling Via Resilient Mounts 80
 10.12 Simple Transmission Model 85
 10.13 Multi-point Coupling 94
11 Waves in Fluids 103
11.1 Wave Equation 103
11.2 Energy and Intensity 109
11.3 Losses ... 110
11.4 Basic Solutions to Wave Equation 113
11.5 Green’s Function 118
11.6 Dipole and Other Multipole Sources 121
11.7 Additional Sources and Solutions 123
11.8 Moving Monopole Sources 129
11.9 Reflection from a Plane Surface 133
11.10 Reflection from a Water Surface 141
11.11 Influence of Temperature and Velocity Gradients . 143
11.12 Acoustic Fields in Closed Rooms 146
11.13 Geometrical Acoustics 151
11.14 Near and Reverberant Acoustic Fields in a Room . 155
11.15 Measurement of the Sound Transmission Loss of a Wall . 157
Problems .. 159

12 Fluid Structure Interaction and Radiation of Sound 163
12.1 Radiation and Fluid Loading of Infinite Plates 163
12.2 Radiation—General Formulation 169
12.3 Green’s Function—Rigid Plane Boundary 171
12.4 Spatial Fourier Transforms—Several Variables 174
12.5 Radiation from Infinite Point-Excited Plates 177
12.6 Mobilities of Fluid-Loaded Infinite Plates 181
12.7 Discussion of Results—Infinite Fluid-Loaded Plates . 184
12.8 Radiation from Finite Baffled Plates 186
12.9 Radiation Ratios—Finite Baffled Plates 192
12.10 Radiation from Point-Excited Plates 197
12.11 Sound Radiation Ratios—Cylinders 200
12.12 Losses Due to Radiation 202
12.13 Radiation from Fluid-Loaded Finite Plates 204
Problems .. 212

13 Sound Transmission Loss of Panels 215
13.1 Sound Transmission Through Infinite Flat Panels 216
13.2 Plate Velocity Induced by an Acoustic Field 223
13.3 Sound Transmission Between Rooms Separated by a Single Leaf Panel . 226
13.4 Sound Transmission Between Equal Rooms 234
13.5 Sound Transmission Between Irregular Rooms 236
13.6 Effect of Boundary Conditions of Plate on Sound
Transmission Loss .. 237
13.7 Effect of a Baffle on Sound Transmission Loss 243
13.8 Measurement Results 248
13.9 Loss Factors and Summary 253
13.10 Sound Transmission Through Complex Structures 256
13.11 Flanking Transmission 260
13.12 Sound Transmission Through Fluid Loaded Plates 261
Problems .. 262

14 Waveguides ... 265
14.1 Introduction .. 265
14.2 Structural Waveguides 267
14.3 Coupled Structural Waveguides 270
14.4 Measurements and Predictions 276
14.5 Composite, Sandwich, and Honeycomb Plates 289
14.6 Flexural Vibrations of Honeycomb/Sandwich Beams 294
14.7 Wavenumbers, Sandwich/Honeycomb Beams 296
14.8 Displacement ... 298
14.9 Dynamic Properties of Sandwich Beams 302
14.10 Bending Stiffness of Sandwich Plates 305
14.11 Response of Sandwich Beams 307
14.12 Energy Flow in Sandwich Beams 312
14.13 Energy Flow Across Pinned Junctions 314
14.14 Wave Propagation on Infinite Cylinders 316
14.15 Vibration of Open Circular Cylindrical Shells 322
14.16 Sound Transmission Loss of Shallow Shell Segments ... 324
14.17 Comparison Between Measured and Predicted TL 329
Problems .. 337

15 Random Excitation of Structures 339
15.1 Introduction .. 339
15.2 Excitation of Plates ... 342
15.3 Rain on the Roof Excitation of Plates 346
15.4 Turbulent Boundary Layers 350
15.5 TBL Models .. 352
15.6 Plate Response Due to TBL Excitation 356
15.7 Measurements of TBL-Induced Vibrations 362
15.8 Comparison Between Measured and Predicted
Velocity Levels Induced by TBL 366
15.9 Parameter Study ... 371
15.10 Flow Noise Induced in Ships 373
Problems .. 378
16 Transmission of Sound in Built-Up Structures

- **16.1** Introduction ... 380
- **16.2** Statistical Energy Analysis, SEA 382
- **16.3** Energy Flow Between Continuous Systems 387
- **16.4** Coupling Between Acoustic Fields and Vibrating Structures .. 390
- **16.5** Prediction of Sound Transmission Through a Panel Using SEA .. 393
- **16.6** Sound Transmission Through Double Walls 395
- **16.7** Limitation of SEA-Derived Sound Transmission Loss 398
- **16.8** Coupling Between Vibrating Structures 400
- **16.9** Energy Flow in Large Structures, SEA 402
- **16.10** SEA Parameters .. 406
- **16.11** Ship Noise .. 409
- **16.12** Waveguide Model .. 411
- **16.13** Noise Levels in Accommodation Spaces 415
- **16.14** Source Data .. 417
- **16.15** Measured and Predicted Results 418
- **16.16** Conclusions—Noise Prediction on Ships 423
- **Problems** .. 424

Appendix A: Sound Transmission Loss of Single Leaf Panels

Appendix B: Velocity Level of Single Leaf Panels Excited by an Acoustic Field

Appendix C: Input Data for Noise Prediction on Ships

References .. 437

Index ... 449
Vibro-Acoustics, Volume 2
Nilsson, A.; Liu, B.
2016, X, 452 p., Hardcover
ISBN: 978-3-662-47933-9