Chapter 2
Replication of Continuous Chaos
About Equilibria

To approve stable chaotic motions by utilizing the input–output analysis one needs base-systems with attractors. The simplest attractors are equilibriums. This is why we start with perturbation of linear systems with constant coefficients and globally asymptotically stable equilibriums. In this chapter, we introduce chaotic sets of functions, the generator and replicator of chaos, precise description of ingredients for Devaney and Li–Yorke chaos in continuous dynamics. Moreover, we shall discuss morphogenesis phenomenon, hyperbolic set of functions, intermittency, chaos control, the double-scroll Chua’s attractor, and quasiperiodicity. Appropriate simulations which confirm the theoretical results are provided. We consider the morphogenesis concept, since it helps us to describe in the most general form the expansion of chaos, which is not only an enlargement of the dimension of chaotic systems, but also saving properties of chaos during the extension.

2.1 Introduction

It is known that if one considers the evolution equation \(u' = L[u] + I(t) \), where \(L[u] \) is a linear operator with spectra placed in the left half of the complex plane, then a function \(I(t) \) being considered as an input with a certain property (boundedness, periodicity, almost periodicity) produces through the equation the output, a solution with a similar property, boundedness/perodicity/almost periodicity [1–4].

A reasonable question appears whether it is possible to use as input a chaotic motion and to obtain output also as a chaos of certain type. The present chapter is devoted to answer this question even if the input is inserted nonlinearly. One must say that we consider as an input first of all a single function, a member of a chaotic set to obtain a solution, which is a member of another chaotic set. Besides that we consider the chaotic sets as the input and the output. We have been forced to
consider sets of functions as inputs and outputs, since Devaney or Li–Yorke chaos are indicated through relation of motions (sensitivity, transitiveness, proximality). Thus, we consider the input and the output not only as single functions, but also as collections of functions. The way of our investigation is arranged in the well-accepted traditional mathematical fashion, but with a new and a more complex way of arrangement of the connections between the input and the output.

Since the concept of chaos is much more complex than just single periodic or almost periodic solutions, we have to use a special terminology for the chaos generation through the input–output mechanism, replication of chaos.

The technique of the replication used in this chapter is as follows. We need a source of chaotic inputs, but mostly chaos can be obtained through solving differential or difference equations. For this reason, we use special generator systems as the source of chaos or chaotic functions. Nevertheless, we emphasize that the generator is not necessarily the element of the replication procedure since it can be replaced by another source of a chaotic input, and in applications present result may be considered with, for example, chaotic inputs obtained from experimental activity. So, initially, we take into account a system of differential equations (the generator) which produces chaos, and we use this system to influence in a unidirectional way, another system (the replicator) in such a manner that the replicator mimics the same ingredients of chaos provided to the generator. In the present chapter, we use such ingredients in the form of period-doubling cascade, Devaney and Li–Yorke chaos. For the study of the subject, we introduce new definitions such as chaotic sets of functions, the generator and replicator of chaos, and precise description of ingredients for Devaney and Li–Yorke chaos in continuous dynamics.

Throughout the chapter, the generator will be considered as a system of the form

$$x' = F(t, x),$$ \hspace{1cm} (2.1.1)

where $F : \mathbb{R} \times \mathbb{R}^m \rightarrow \mathbb{R}^m$ is a continuous function in all its arguments, and the replicator is assumed to have the form

$$y' = Ay + g(x(t), y),$$ \hspace{1cm} (2.1.2)

where $g : \mathbb{R}^m \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a continuous function in all its arguments, the constant $n \times n$ real-valued matrix A has real parts of eigenvalues all negative and the function $x(t)$ is a solution of system (2.1.1).

We consider, in this chapter, the linear equation

$$z' = Az$$ \hspace{1cm} (2.1.3)

as the base-system. The condition on eigenvalues of matrix A implies that the base-system admits asymptotically stable equilibrium. The generator–replicator couple, (2.1.1) + (2.1.2), will be called in the remaining parts of the chapter as the result-system.
Now, to illustrate the replication mechanism discussed in this chapter, let us consider the following example. For our purposes, as the generator we shall take into account the Duffing’s oscillator represented by the differential equation

\[x'' + 0.05x' + x^3 = 7.5 \cos t. \]

(2.1.4)

It is known that Eq. (2.1.4) possesses a chaotic attractor [5]. Defining the variables \(x_1 = x \) and \(x_2 = x' \), Eq. (2.1.4) can be reduced to the system

\[
\begin{align*}
 x_1' &= x_2 \\
 x_2' &= -0.05x_2 - x_1^3 + 7.5 \cos t.
\end{align*}
\]

(2.1.5)

Next, let us consider the following system:

\[
\begin{align*}
 x_3' &= x_4 + x_1(t) \\
 x_4' &= -3x_3 - 2x_4 - 0.008x_3^3 + x_2(t).
\end{align*}
\]

(2.1.6)

In this form system (2.1.6) is a replicator. One has to emphasize that the linear part of the associated with (2.1.6) non-perturbed system

\[
\begin{align*}
 x_3' &= x_4 \\
 x_4' &= -3x_3 - 2x_4 - 0.008x_3^3,
\end{align*}
\]

(2.1.7)

has eigenvalues with negative real parts and does not admit chaos.

Figure 2.1 shows the trajectory of system (2.1.7) with \(x_3(0) = -2 \) and \(x_4(0) = 1 \). It is seen in the figure that the behavior of the solution is non-chaotic.

To visualize the process of replication by the result-system, (2.1.5) + (2.1.6), let us consider the Poincaré sections of the both. By marking the trajectory of this system with the initial data \(x_1(0) = 2, x_2(0) = 3, x_3(0) = -1, x_4(0) = 1 \) stroboscopically.

![Fig. 2.1 The trajectory of system (2.1.7) with \(x_3(0) = -2 \) and \(x_4(0) = 1 \).](image)
at times that are integer multiples of \(2\pi\), we obtain the Poincaré section and in Fig. 2.2, where the chaos replication is apparent, we illustrate its 2-dimensional projections. Figure 2.2a represents the projection of the Poincaré section on the \(x_1 - x_2\) plane, and we note that this projection is in fact the strange attractor of the generator system (2.1.5). On the other hand, the projection on the \(x_3 - x_4\) plane presented in Fig. 2.2b is the attractor corresponding to the replicator system (2.1.6). One can see that the attractor indicated in Fig. 2.2b repeated the structure of the attractor shown in Fig. 2.2a and this result is a manifestation of the replication of chaos. One has to think about mathematical aspects of this phenomena and in this chapter we handle this problem.

In our theoretical results, we use coupled systems in which the generator influences the replicator in a unidirectional way. In other words, the generator affects the behavior of the replicator counterpart in such a way that the solutions of the generator are used as an input for the latter. The possibility of making use of more than one replicator systems with arbitrarily high dimensions in the extension mechanism is an advantage of our procedure. Moreover, we are describing a process involving the replication of chaos which does not occur in the course of time, but instead an instantaneous one. In other words, the prior chaos is mimicked in all existing replicators such that the generating mechanism works through arranging connections between systems not with the lapse of time.

Since we do not restrict ourselves in this chapter with a simple couple the generator–the replicator, but get them in different combinations and numbers, having the geometric features of chaos saved, we shall call the extension of chaos as morphogenesis.

In the next section we will present assumptions for systems (2.1.1) and (2.1.2) which are needed for the chaos replication, and introduce the chaotic attractors of these systems in the functional sense.
2.2 Preliminaries

Throughout the chapter, \mathbb{R} and \mathbb{N} will denote the sets of real numbers and natural numbers, respectively. We will make use of the usual Euclidean norm for vectors and the norm induced by the Euclidean norm for square matrices [6], that is,

$$\| \Gamma \| = \max \left\{ \sqrt{\varsigma} : \varsigma \text{ is an eigenvalue of } \Gamma^T \Gamma \right\}$$

for any square matrix Γ with real entries, and Γ^T denotes the transpose of the matrix Γ.

Since the matrix A, which is aforementioned in system (2.1.2), is supposed to admit eigenvalues all with negative real parts, it is easy to verify the existence of positive numbers N and ω such that $\| e^{At} \| \leq Ne^{-\omega t}$, $t \geq 0$. These numbers will be used in the last condition below.

The following assumptions on systems (2.1.1) and (2.1.2) are needed throughout the chapter:

(A1) There exists a positive number T such that the function $F(t, x)$ satisfies the periodicity condition

$$F(t + T, x) = F(t, x),$$

for all $t \in \mathbb{R}, x \in \mathbb{R}^m$;

(A2) There exists a positive number L_0 such that

$$\| F(t, x_1) - F(t, x_2) \| \leq L_0 \| x_1 - x_2 \|,$$

for all $t \in \mathbb{R}, x_1, x_2 \in \mathbb{R}^m$;

(A3) There exists a positive number $H_0 < \infty$ such that

$$\sup_{t \in \mathbb{R}, x \in \mathbb{R}^m} \| F(t, x) \| \leq H_0;$$

(A4) There exists a positive number L_1 such that

$$\| g(x_1, y) - g(x_2, y) \| \geq L_1 \| x_1 - x_2 \|,$$

for all $x_1, x_2 \in \mathbb{R}^m, y \in \mathbb{R}^n$;

(A5) There exist positive numbers L_2 and L_3 such that

$$\| g(x_1, y) - g(x_2, y) \| \leq L_2 \| x_1 - x_2 \|,$$

for all $x_1, x_2 \in \mathbb{R}^m, y \in \mathbb{R}^n$, and

$$\| g(x, y_1) - g(x, y_2) \| \leq L_3 \| y_1 - y_2 \|,$$
for all \(x \in \mathbb{R}^m, y_1, y_2 \in \mathbb{R}^n \);

(A6) There exists a positive number \(M_0 < \infty \) such that

\[
\sup_{x \in \mathbb{R}^m, y \in \mathbb{R}^n} \| g(x, y) \| \leq M_0;
\]

(A7) \(NL_3 - \omega < 0 \).

Remark 2.1 The results presented in the remaining parts are also true even if we replace the nonautonomous system (2.1.1) by the autonomous equation

\[
x' = \overline{F}(x), \tag{2.2.8}
\]

where the function \(\overline{F} : \mathbb{R}^m \to \mathbb{R}^m \) is continuous with conditions which are counterparts of (A2) and (A3).

At the present time, systems of differential equations which are known to exhibit chaotic behavior are either nonautonomous and periodic in time such as the Duffing and Van der Pol oscillators or autonomous such as the Lorenz, Chua and Rössler systems. In a similar way, in our investigations of chaos generation, we take advantage of periodic nonautonomous systems as well as autonomous ones as generators.

Using the theory of quasilinear equations [7], one can verify that for a given solution \(x(t) \) of system (2.1.1), there exists a unique bounded on \(\mathbb{R} \) solution \(y(t) \) of the system \(y' = Ay + g(x(t), y) \), denoted by \(y(t) = \phi_{x(t)}(t) \), which satisfies the integral equation

\[
y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s)) ds. \tag{2.2.9}
\]

Our main assumption is the existence of a nonempty set \(\mathcal{A}_x \) of all solutions of system (2.1.1), uniformly bounded on \(\mathbb{R} \). That is, there exists a positive number \(H \) such that \(\sup_{t \in \mathbb{R}} \| x(t) \| \leq H \), for all \(x(t) \in \mathcal{A}_x \).

Let us introduce the sets of functions

\[
\mathcal{A}_y = \left\{ \phi_{x(t)}(t) \mid x(t) \in \mathcal{A}_x \right\}, \tag{2.2.10}
\]

and

\[
\mathcal{A} = \left\{ (x(t), \phi_{x(t)}(t)) \mid x(t) \in \mathcal{A}_x \right\}. \tag{2.2.11}
\]

We note that for all \(y(t) \in \mathcal{A}_y \) one has \(\sup_{t \in \mathbb{R}} \| y(t) \| \leq M \), where \(M = \frac{NM_0}{\omega} \).

Next, we reveal that if the set \(\mathcal{A}_x \) is an attractor with basin \(\mathcal{U}_x \), that is, for each \(x(t) \in \mathcal{U}_x \) there exists \(\overline{x}(t) \in \mathcal{A}_x \) such that \(\| x(t) - \overline{x}(t) \| \to 0 \) as \(t \to \infty \), then the set \(\mathcal{A}_y \) is also an attractor in the same sense. Denote by \(\mathcal{U}_y \) the set consisting of all
solutions of system \(y' = Ay + g(x(t), y) \), where \(x(t) \in \mathcal{U}_x \). In the next lemma we specify the basin of attraction of \(\mathcal{A}_y \).

Lemma 2.1 \(\mathcal{U}_y \) is a basin of \(\mathcal{A}_y \).

Proof Fix an arbitrary positive number \(\varepsilon \) and let \(y(t) \in \mathcal{U}_y \) be a given solution of the system \(y' = Ay + g(x(t), y) \) for some \(x(t) \in \mathcal{U}_x \). In this case, there exists \(\bar{x}(t) \in \mathcal{A}_x \) such that \(\| x(t) - \bar{x}(t) \| \to 0 \) as \(t \to \infty \). Let \(\alpha = \frac{\omega - NL_3}{\omega - NL_3 + NL_2} \) and \(\bar{y}(t) = \phi_{\bar{x}(t)}(t) \). Condition (A7) implies that the number \(\alpha \) is positive. Under the circumstances, one can find \(R_0 = R_0(\varepsilon) > 0 \) such that if \(t \geq R_0 \), then \(\| x(t) - \bar{x}(t) \| < \alpha \varepsilon \) and \(N \| y(R_0) - \bar{y}(R_0) \| e^{(NL_3 - \omega)t} < \alpha \varepsilon \). The functions \(y(t) \) and \(\bar{y}(t) \) satisfy the relations

\[
y(t) = e^{A(t-R_0)} y(R_0) + \int_{R_0}^{t} e^{A(t-s)} g(x(s), y(s)) ds,
\]

and

\[
\bar{y}(t) = e^{A(t-R_0)} \bar{y}(R_0) + \int_{R_0}^{t} e^{A(t-s)} g(\bar{x}(s), \bar{y}(s)) ds,
\]

respectively. Making use of these relations, one can verify that

\[
y(t) - \bar{y}(t) = e^{A(t-R_0)} (y(R_0) - \bar{y}(R_0))
+ \int_{R_0}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(x(s), \bar{y}(s))] ds
+ \int_{R_0}^{t} e^{A(t-s)} [g(x(s), \bar{y}(s)) - g(\bar{x}(s), \bar{y}(s))] ds.
\]

Therefore, we have

\[
\| y(t) - \bar{y}(t) \| \leq Ne^{-\omega(t-R_0)} \| y(R_0) - \bar{y}(R_0) \| + \frac{NL_2 \alpha \varepsilon}{\omega} e^{-\omega t} \left(e^{\omega t} - e^{\omega R_0} \right)
+ NL_3 \int_{R_0}^{t} e^{-\omega(t-s)} \| y(s) - \bar{y}(s) \| ds.
\]

Let \(u : [R_0, \infty) \to [0, \infty) \) be a function defined as \(u(t) = e^{\omega t} \| y(t) - \bar{y}(t) \| \). By means of this definition, we reach the inequality

\[
u(t) \leq Ne^{\omega R_0} \| y(R_0) - \bar{y}(R_0) \| + \frac{NL_2 \alpha \varepsilon}{\omega} \left(e^{\omega t} - e^{\omega R_0} \right) + NL_3 \int_{R_0}^{t} u(s) ds.
\]

Now, let \(\psi(t) = \frac{NL_2 \alpha \varepsilon}{\omega} e^{\omega t} \) and \(\phi(t) = \psi(t) + c \), where
\[c = N e^{\omega R_0} \| y(R_0) - \bar{y}(R_0) \| - \frac{NL_2 \alpha \varepsilon}{\omega} e^{\omega R_0}. \]

Using these functions we get

\[u(t) \leq \phi(t) + NL_3 \int_{R_0}^{t} u(s)ds. \]

Applying Gronwall’s Lemma [8] to the last inequality for \(t \geq R_0 \), we attain the inequality

\[u(t) \leq c + \psi(t) + NL_3 \int_{R_0}^{t} e^{NL_3(t-s)} c ds + NL_3 \int_{R_0}^{t} e^{NL_3(t-s)} \psi(s) ds \]

and hence,

\[u(t) \leq c + \psi(t) + c \left(e^{NL_3(t-R_0)} - 1 \right) \]

\[+ \frac{N^2 L_2 L_3 \alpha \varepsilon}{\omega (\omega - NL_3)} e^{\omega t} \left(1 - e^{(NL_3 - \omega)(t-R_0)} \right) \]

\[= \frac{NL_2 \alpha \varepsilon}{\omega} e^{\omega t} + N \| y(R_0) - \bar{y}(R_0) \| e^{\omega R_0} e^{NL_3(t-R_0)} \]

\[- \frac{NL_2 \alpha \varepsilon}{\omega} e^{\omega R_0} e^{NL_3(t-R_0)} + \frac{N^2 L_2 L_3 \alpha \varepsilon}{\omega (\omega - NL_3)} e^{\omega t} \left(1 - e^{(NL_3 - \omega)(t-R_0)} \right). \]

Thus,

\[\| y(t) - \bar{y}(t) \| \leq \frac{NL_2 \alpha \varepsilon}{\omega} + N \| y(R_0) - \bar{y}(R_0) \| e^{(NL_3 - \omega)(t-R_0)} \]

\[- \frac{NL_2 \alpha \varepsilon}{\omega} e^{(NL_3 - \omega)(t-R_0)} + \frac{N^2 L_2 L_3 \alpha \varepsilon}{\omega (\omega - NL_3)} \left(1 - e^{(NL_3 - \omega)(t-R_0)} \right) \]

\[< N \| y(R_0) - \bar{y}(R_0) \| e^{(NL_3 - \omega)(t-R_0)} + \frac{NL_2 \alpha \varepsilon}{\omega - NL_3}. \]

Consequently, for \(t \geq 2R_0 \), we have that

\[\| y(t) - \bar{y}(t) \| < \left(1 + \frac{NL_2}{\omega - NL_3} \right) \alpha \varepsilon = \varepsilon, \]

and hence \(\| y(t) - \bar{y}(t) \| \to 0 \) as \(t \to \infty \).

The proof of the lemma is completed. \(\square \)

Now, let us define the set \(\mathcal{U} \) consisting the solutions \((x(t), y(t))\) of system (2.1.1) + (2.1.2), where \(x(t) \in \mathcal{U}_x \). Next, we state the following corollary of Lemma 2.1.
Corollary 2.1 \mathcal{U} is a basin of \mathcal{A}.

Proof Let $(x(t), y(t)) \in \mathcal{U}$ be a given solution of system (2.1.1) + (2.1.2). According to Lemma 2.1, there exists a function $(\overline{x}(t), \overline{y}(t)) \in \mathcal{A}$ such that both $\|x(t) - \overline{x}(t)\|$ and $\|y(t) - \overline{y}(t)\|$ tend to 0 as t tends to ∞. Consequently,

$$\|(x(t), y(t)) - (\overline{x}(t), \overline{y}(t))\| \to 0 \text{ as } t \to \infty.$$

The proof is finalized. \square

2.3 Chaotic Sets of Functions

In this section, the descriptions for the chaotic sets of continuous functions will be introduced and the definitions of the chaotic features will be presented, both in the Devaney’s sense and in the sense of Li–Yorke.

Let us denote by

$$\mathcal{B} = \{ \psi(t) \mid \psi : \mathbb{R} \to K \text{ is continuous} \} \quad (2.3.12)$$

a collection of functions, where $K \subset \mathbb{R}^q$, $q \in \mathbb{N}$, is a bounded region.

We start with the description of chaotic sets of functions in Devaney’s sense and then continue with the Li–Yorke counterpart.

2.3.1 Devaney Set of Functions

In this part, we shall elucidate the ingredients of the chaos in Devaney’s sense for the set \mathcal{B}, which is introduced by (2.3.12), and the first definition is about the sensitivity of chaotic sets of functions.

Definition 2.1 \mathcal{B} is called sensitive if there exist positive numbers ε and Δ such that for every $\psi(t) \in \mathcal{B}$ and for arbitrary $\delta > 0$ there exist $\overline{\psi}(t) \in \mathcal{B}$, $t_0 \in \mathbb{R}$ and an interval $J \subset [t_0, \infty)$, with length not less than Δ, such that $\|\psi(t_0) - \overline{\psi}(t_0)\| < \delta$ and $\|\psi(t) - \overline{\psi}(t)\| > \varepsilon$, for all $t \in J$.

Definition 2.1 considers the inequality $(>\varepsilon)$ over the interval J. In the Devaney’s chaos definition for the map, the inequality is assumed for discrete moments. Let us reveal how one can extend the inequality from a discrete point to an interval by considering continuous flows.

In [9], it is indicated that a continuous map $\varphi : \Lambda \to \Lambda$, with an invariant domain $\Lambda \subset \mathbb{R}^k$, $k \in \mathbb{N}$, has sensitive dependence on initial conditions if there exists $\varepsilon > 0$ such that for any $x \in \Lambda$ and any neighborhood \mathcal{U} of x, there exist $y \in \mathcal{U}$ and a natural number n such that $\|\varphi^n(x) - \varphi^n(y)\| > \varepsilon$.

Suppose that the set \mathcal{A}_x satisfies the definition of sensitivity in the following sense: There exists $\varepsilon > 0$ such that for every $x(t) \in \mathcal{A}_x$ and arbitrary $\delta > 0$, there exist
\(x(t) \in \mathcal{X}, t_0 \in \mathbb{R}\) and a real number \(\xi \geq t_0\) such that \(\|x(t_0) - \bar{x}(t_0)\| < \delta\) and \(\|x(\xi) - \bar{x}(\xi)\| > \varepsilon\).

In this case, for given \(x(t) \in \mathcal{X}\) and \(\delta > 0\), one can find \(\bar{x}(t) \in \mathcal{X}\) and \(\xi \geq t_0\) such that \(\|x(t_0) - \bar{x}(t_0)\| < \delta\) and \(\|x(\xi) - \bar{x}(\xi)\| > \varepsilon\). Let \(\Delta = \frac{2H L_0}{\varepsilon}\) and take a number \(\Delta_1\) such that \(\Delta \leq \Delta_1 \leq \frac{\varepsilon}{4H L_0}\). Using appropriate integral equations for \(t \in [\xi, \xi + \Delta_1]\), it can be verified that

\[
\|x(t) - \bar{x}(t)\| \geq \|x(\xi) - \bar{x}(\xi)\| - \left\| \int_\xi^t [F(s, x(s)) - F(s, \bar{x}(s))] ds \right\| \\
> \varepsilon - 2H L_0 \Delta_1 \\
\geq \frac{\varepsilon}{2}.
\]

The last inequality confirms that \(\mathcal{X}\) satisfies Definition 2.1 with \(\varepsilon = \varepsilon/2\) and \(J = [\xi, \xi + \Delta_1]\). So the definition is a natural one. It provides more information then discrete moments and for us it is important that the extension on the interval is useful to prove the property for chaos extension.

In the next two definitions, we continue with the existence of a dense function in the set of chaotic functions followed by the transitivity property.

Definition 2.2 \(\mathcal{B}\) possesses a dense function \(\psi^*(t) \in \mathcal{B}\) if for every function \(\psi(t) \in \mathcal{B}\), arbitrary small \(\varepsilon > 0\) and arbitrary large \(E > 0\), there exist a number \(\xi > 0\) and an interval \(J \subset \mathbb{R}\), with length \(E\), such that \(\|\psi(t) - \psi^*(t + \xi)\| < \varepsilon\), for all \(t \in J\).

Definition 2.3 \(\mathcal{B}\) is called transitive if it possesses a dense function.

Now, let us recall the definition of transitivity for maps [9]. A continuous map \(\varphi\) with an invariant domain \(\Lambda \subset \mathbb{R}^k, k \in \mathbb{N}\), possesses a dense orbit if there exists \(c^* \in \Lambda\) such that for each \(c \in \Lambda\) and arbitrary number \(\varepsilon > 0\), there exist natural numbers \(k_0\) and \(l_0\) such that \(\|\varphi^{l_0}(c) - \varphi^{l_0+k_0}(c^*)\| < \varepsilon\), and maps which have dense orbits are called transitive.

Suppose that \(\mathcal{X}\) satisfies the transitivity property in the following sense. There exists a function \(x^*(t) \in \mathcal{X}\) such that for each \(x(t) \in \mathcal{X}\) and arbitrary positive number \(\varepsilon\), there exist a real number \(\xi_0\) and a natural number \(m_0\) such that \(\|x(\xi_0) - x^*(\xi_0 + m_0 T)\| < \varepsilon\).

Fix an arbitrary function \(x(t) \in \mathcal{X}\), arbitrary small \(\varepsilon > 0\) and arbitrary large \(E > 0\). Under the circumstances, one can find \(\xi_0 \in \mathbb{R}\) and \(m_0 \in \mathbb{N}\) such that \(\|x(\xi_0) - x^*(\xi_0 + m_0 T)\| < \varepsilon e^{-L_0 E}\).

Using the condition (A2) together with the convenient integral equations that \(x(t)\) and \(x^*(t)\) satisfy, it is easy to obtain for \(t \in [\xi_0, \xi_0 + E]\) that

\[
\|x(t) - x^*(t + m_0 T)\| \leq \|x(\xi_0) - x^*(\xi_0 + m_0 T)\| \\
+ \int_{\xi_0}^t L_0 \|x(s) - x^*(s + m_0 T)\| ds,
\]
and by the help of the Gronwall–Bellman inequality [2], we get
\[\| x(t) - x^*(t + m_0 T) \| \leq \| x(\zeta_0) - x^*(\zeta_0 + m_0 T) \| e^{L_0 (t - \zeta_0)} < \varepsilon. \]

The last inequality shows that the set \(\mathcal{A}_x \) satisfies Definition 2.2 with \(\xi = k_0 T \) and is transitive in accordance with Definition 2.3.

The following definition describes the density of periodic functions inside \(B \).

Definition 2.4 \(B \) admits a dense collection \(\mathcal{G} \subset B \) of periodic functions if for every function \(\psi(t) \in B \), arbitrary small \(\varepsilon > 0 \) and arbitrary large \(E > 0 \), there exist \(\tilde{\psi}(t) \in \mathcal{G} \) and an interval \(J \subset \mathbb{R} \), with length \(E \), such that \(\| \psi(t) - \tilde{\psi}(t) \| < \varepsilon \), for all \(t \in J \).

Let us remind the definition of density of periodic orbits for maps [9]. The set of periodic orbits of a continuous map \(\varphi \) with an invariant domain \(\Lambda \subset \mathbb{R}^k \), \(k \in \mathbb{N} \), is called dense in \(\Lambda \) if for each \(c \in \Lambda \), arbitrary positive number \(\varepsilon \), there exist a natural number \(l_0 \) and a point \(\tilde{c} \in \Lambda \) such that the sequence \(\{ \varphi^i(\tilde{c}) \} \) is periodic and \(\| \varphi^{l_0}(c) - \varphi^{l_0}(\tilde{c}) \| < \varepsilon \).

Let us denote by \(G_x \) the set of all periodic functions inside \(\mathcal{A}_x \). Suppose that \(\mathcal{A}_x \) satisfies density of periodic solutions as follows. For an arbitrary function \(x(t) \in \mathcal{A}_x \) and arbitrary small \(\varepsilon > 0 \) there exist a periodic function \(\tilde{x}(t) \in G_x \) and a number \(\zeta_0 \in \mathbb{R} \) such that \(\| x(\zeta_0) - \tilde{x}(\zeta_0) \| < \varepsilon \).

Let us fix an arbitrary function \(x(t) \in \mathcal{A}_x \), arbitrary small \(\varepsilon > 0 \) and arbitrary large \(E > 0 \). In that case, there exist a periodic function \(\tilde{x}(t) \in G_x \) and \(\zeta_0 \in \mathbb{R} \) such that \(\| x(\zeta_0) - \tilde{x}(\zeta_0) \| < \varepsilon e^{-L_0 E} \).

It can be easily verified for \(t \in [\zeta_0, \zeta_0 + E] \) that the inequality
\[\| x(t) - \tilde{x}(t) \| \leq \| x(\zeta_0) - \tilde{x}(\zeta_0) \| + \int_{\zeta_0}^{t} L_0 \| x(s) - \tilde{x}(s) \| ds, \]
holds, and therefore for each \(t \) from the same interval of time we have
\[\| x(t) - \tilde{x}(t) \| \leq \| x(\zeta_0) - \tilde{x}(\zeta_0) \| e^{L_0 (t - \zeta_0)} < \varepsilon. \]

Consequently, the set \(\mathcal{A}_x \) satisfies Definition 2.4 with \(J = [\zeta_0, \zeta_0 + E] \).

Finally, we introduce in the next definition the chaotic set of functions in Devaney’s sense.
Definition 2.5 The collection \mathcal{B} of functions is called a Devaney’s chaotic set if

\begin{itemize}
 \item[(D1)] \mathcal{B} is sensitive;
 \item[(D2)] \mathcal{B} is transitive;
 \item[(D3)] \mathcal{B} admits a dense collection of periodic functions.
\end{itemize}

In the next subsection, the chaotic properties of the set \mathcal{B} will be imposed in the sense of Li–Yorke.

2.3.2 Li–Yorke Set of Functions

The ingredients of Li–Yorke chaos for the collection of functions \mathcal{B}, which is defined by (2.3.12), will be described in this part. Making use of discussions similar to the ones made in the previous subsection, we extend, below, the definitions for the ingredients of Li–Yorke chaos from maps [10–13] to continuous flows and we just omit these indications here.

Definition 2.6 A couple of functions $(\psi(t), \overline{\psi}(t)) \in \mathcal{B} \times \mathcal{B}$ is called proximal if for arbitrary small $\varepsilon > 0$ and arbitrary large $E > 0$, there exist infinitely many disjoint intervals of length not less than E such that $\|\psi(t) - \overline{\psi}(t)\| < \varepsilon$, for each t from these intervals.

Definition 2.7 A couple of functions $(\psi(t), \overline{\psi}(t)) \in \mathcal{B} \times \mathcal{B}$ is frequently (ε_0, Δ)-separated if there exist positive numbers ε_0, Δ and infinitely many disjoint intervals of length no less than Δ, such that $\|\psi(t) - \overline{\psi}(t)\| > \varepsilon_0$, for each t from these intervals.

Remark 2.2 The numbers ε_0 and Δ taken into account in Definition 2.7 depend on the functions $\psi(t)$ and $\overline{\psi}(t)$.

Definition 2.8 A couple of functions $(\psi(t), \overline{\psi}(t)) \in \mathcal{B} \times \mathcal{B}$ is a Li–Yorke pair if they are proximal and frequently (ε_0, Δ)-separated for some positive numbers ε_0 and Δ.

Definition 2.9 An uncountable set $\mathcal{C} \subset \mathcal{B}$ is called a scrambled set if \mathcal{C} does not contain any periodic functions and each couple of different functions inside $\mathcal{C} \times \mathcal{C}$ is a Li–Yorke pair.

Definition 2.10 \mathcal{B} is called a Li–Yorke chaotic set if

\begin{itemize}
 \item[(LY1)] There exists a positive number T_0 such that \mathcal{B} admits a periodic function of period kT_0, for any $k \in \mathbb{N}$;
 \item[(LY2)] \mathcal{B} possesses a scrambled set \mathcal{C};
 \item[(LY3)] For any function $\psi(t) \in \mathcal{C}$ and any periodic function $\overline{\psi}(t) \in \mathcal{B}$, the couple $(\psi(t), \overline{\psi}(t))$ is frequently (ε_0, Δ)—separated for some positive numbers ε_0 and Δ.
\end{itemize}
2.4 Hyperbolic Set of Functions

The definitions of stable and unstable sets of hyperbolic periodic orbits of autonomous systems are given in [14], and information about such sets of solutions of perturbed nonautonomous systems can be found in [15]. Moreover, homoclinic structures in almost periodic systems were studied in [16–18]. In this section, we give a definition for hyperbolic collection of uniformly bounded functions and before this, we start with the descriptions of stable and unstable sets of a function.

We define the stable set of a function \(\psi(t) \in \mathcal{B} \), where the collection \(\mathcal{B} \) is defined by (2.3.12), as the set of functions
\[
W^s(\psi(t)) = \{ u(t) \in \mathcal{B} | \| u(t) - \psi(t) \| \to 0 \text{ as } t \to \infty \}, \tag{2.4.13}
\]
and, similarly, we define the unstable set of a function \(\psi(t) \in \mathcal{B} \) as the set of functions
\[
W^u(\psi(t)) = \{ v(t) \in \mathcal{B} | \| v(t) - \psi(t) \| \to 0 \text{ as } t \to -\infty \}. \tag{2.4.14}
\]

Definition 2.11 The set of functions \(\mathcal{B} \) is called hyperbolic if the stable and unstable sets of each function \(\psi(t) \in \mathcal{B} \) possess at least one element different from \(\psi(t) \).

Theorem 2.1 If \(\mathcal{A}_x \) is hyperbolic, then the same is true for \(\mathcal{A}_y \).

Proof Fix an arbitrary positive number \(\varepsilon \) and a function \(y(t) = \phi_{x(t)}(t) \in \mathcal{A}_y \). Let
\[
\alpha = \frac{\omega - NL_3}{\omega - NL_3 + NL_2} \quad \text{and} \quad \beta = \frac{\omega - NL_3}{1 + NL_2}.
\]
By condition (A7), one can verify that the numbers \(\alpha \) and \(\beta \) are both positive.

Due to hyperbolicity of \(\mathcal{A}_x \), the function \(x(t) \) has a nonempty stable set \(W^s(x(t)) \) and a nonempty unstable set \(W^u(x(t)) \).

Let us take an arbitrary function \(u(t) \in W^s(x(t)) \). Since \(\| x(t) - u(t) \| \to 0 \) as \(t \to \infty \) and \(NL_3 - \omega < 0 \), there exists a positive number \(R_1 \), which depends on \(\varepsilon \), such that \(\| x(t) - u(t) \| < \alpha \varepsilon \) and \(e^{(NL_3-\omega)t} < \frac{\omega \alpha \varepsilon}{2M_0 N} \) for \(t \geq R_1 \). Let \(\overline{y}(t) = \phi_{u(t)}(t) \). We shall prove that the function \(\overline{y}(t) \) belongs to the stable set of \(y(t) \).

The bounded on \(\mathbb{R} \) functions \(y(t) \) and \(\overline{y}(t) \) satisfy the relations
\[
y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s))\,ds,
\]
and
\[
\overline{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} g(u(s), \overline{y}(s))\,ds,
\]
respectively, for \(t \geq R_1 \).
Therefore, one can easily reach up the equation
\[
y(t) - \overline{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(u(s), \overline{y}(s))] ds \\
+ \int_{R_1}^{t} e^{A(t-s)} \left\{ [g(x(s), y(s)) - g(x(s), \overline{y}(s))] \\
+ [g(x(s), \overline{y}(s)) - g(u(s), \overline{y}(s))] \right\} ds,
\]
which implies that
\[
\|y(t) - \overline{y}(t)\| \leq \int_{-\infty}^{R_1} 2M_0 Ne^{-\omega(t-s)} ds \\
+ \int_{R_1}^{t} e^{-\omega(t-s)} (NL_3 \|y(s) - \overline{y}(s)\| + NL_2 \|x(s) - u(s)\|) ds \\
\leq \frac{2M_0 N}{\omega} e^{-\omega(t-R_1)} + \int_{R_1}^{t} e^{-\omega(t-s)} (NL_3 \|y(s) - \overline{y}(s)\| + NL_2 \alpha \varepsilon) ds.
\]

Using the Gronwall type inequality indicated in [19], we obtain for \(t \geq R_1 \) that
\[
\|y(t) - \overline{y}(t)\| \leq \frac{2M_0 N}{\omega} e^{(NL_3-\omega)(t-R_1)} + \frac{NL_2 \alpha \varepsilon}{\omega - NL_3} \left[1 - e^{(NL_3-\omega)(t-R_1)} \right].
\]
For this reason, for all \(t \geq 2R_1 \), one has
\[
\|y(t) - \overline{y}(t)\| \leq \frac{2M_0 N}{\omega} e^{(NL_3-\omega)R_1} + \frac{NL_2 \alpha \varepsilon}{\omega - NL_3} < \left(1 + \frac{NL_2}{\omega - NL_3} \right) \alpha \varepsilon = \varepsilon.
\]

The last inequality implies that \(\|y(t) - \overline{y}(t)\| \to 0 \) as \(t \to \infty \). Hence, the function \(\overline{y}(t) \) belongs to the stable set \(W^s(y(t)) \) of \(y(t) \).

On the other hand, let \(v(t) \) be a function inside the unstable set \(W^u(x(t)) \). Since \(\|x(t) - v(t)\| \) tends to 0 as \(t \to -\infty \), there exists a negative number \(R_2(\varepsilon) \) such that \(\|x(t) - v(t)\| < \beta \varepsilon \) for \(t \leq R_2 \). Let \(\overline{y}(t) = \phi_{v(t)}(t) \). Now, our purpose is to show that \(\overline{y}(t) \) belongs to the unstable set of \(y(t) \).

By the help of the integral equations
\[
y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s)) ds,
\]
and
\[
\overline{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} g(v(s), \overline{y}(s)) ds,
\]
we obtain that
\[
y(t) - \tilde{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(v(s), y(s))] ds
\]
\[+ \int_{-\infty}^{t} e^{A(t-s)} [g(v(s), y(s)) - g(v(s), \tilde{y}(s))] ds.
\]
Therefore, for \(t \leq R_2\), one has
\[
\|y(t) - \tilde{y}(t)\| \leq \int_{-\infty}^{t} N L_2 e^{-\omega(t-s)} \|x(t) - v(t)\| ds
\]
\[+ \int_{-\infty}^{t} e^{-\omega(t-s)} N L_3 \|y(s) - \tilde{y}(s)\| ds
\]
\[\leq \frac{N L_2 \beta \varepsilon}{\omega} + \frac{N L_3}{\omega} \sup_{t \leq R_2} \|y(t) - \tilde{y}(t)\|.
\]
Hence,
\[
\sup_{t \leq R_2} \|y(t) - \tilde{y}(t)\| \leq \frac{N L_2 \beta \varepsilon}{\omega} + \frac{N L_3}{\omega} \sup_{t \leq R_2} \|y(t) - \tilde{y}(t)\|
\]
and
\[
\sup_{t \leq R_2} \|y(t) - \tilde{y}(t)\| \leq \frac{N L_2 \beta \varepsilon}{\omega - N L_3} < \varepsilon.
\]
The last inequality confirms that \(\|y(t) - \tilde{y}(t)\| \to 0\) as \(t \to -\infty\). Therefore \(\tilde{y}(t) \in W^u(y(t))\).

Consequently, \(\mathcal{A}_y\) is hyperbolic since \(y(t)\) possesses both nonempty stable and unstable sets, denoted by \(W^s(y(t))\) and \(W^u(y(t))\), respectively. The theorem is proved. □

Theorem 2.1 implies the following corollary:

Corollary 2.2 If \(\mathcal{A}_x\) is hyperbolic, then the same is true for \(\mathcal{A}\).

Next, we continue with another corollary of Theorem 2.1, following the definitions of homoclinic and heteroclinic functions.

A function \(\psi_1(t) \in \mathcal{B}\) is said to be homoclinic to the function \(\psi_0(t) \in \mathcal{B}\), \(\psi_0(t) \neq \psi_1(t)\), if \(\psi_1(t) \in W^s(\psi_0(t)) \cap W^u(\psi_0(t))\).

On the other hand, a function \(\psi_2(t) \in \mathcal{B}\) is called heteroclinic to the functions \(\psi_0(t), \psi_1(t) \in \mathcal{B}\), \(\psi_0(t) \neq \psi_2(t), \psi_1(t) \neq \psi_2(t)\), if \(\psi_2(t) \in W^s(\psi_0(t)) \cap W^u(\psi_1(t))\).

Corollary 2.3 If \(x_1(t) \in \mathcal{A}_x\) is homoclinic to the function \(x_0(t) \in \mathcal{A}_x\), \(x_0(t) \neq x(t)\), then \(\phi_{x_1(t)}(t)\) is homoclinic to the function \(\phi_{x_0(t)}(t)\).
Similarly, if \(x_2(t) \in \mathcal{A}_x \) is heteroclinic to the functions \(x_0(t), x_1(t) \in \mathcal{A}_x, x_0(t) \neq x_2(t), x_1(t) \neq x_2(t) \), then \(\phi_{x_2(t)}(t) \) is heteroclinic to the functions \(\phi_{x_0(t)}(t), \phi_{x_1(t)}(t) \).

In the next section, we theoretically prove that the set \(\mathcal{A}_y \) replicates the ingredients of Devaney’s chaos provided to the set \(\mathcal{A}_x \), and as a consequence the same is valid also for the set \(\mathcal{A}_x \). The same problem for the chaos in the sense of Li–Yorke will be handled in Sect. 2.6.

2.5 Replication of Devaney’s Chaos

In this part, we will prove theoretically that the ingredients of Devaney’s chaos furnished to the set \(\mathcal{A}_x \) are all replicated by the set \(\mathcal{A}_y \).

Suppose that the function \(g(x, y) \) which is used in the right hand side of system (2.1.2) has component functions \(g_j(x, y), j = 1, 2, \ldots, n \). That is,

\[
g(x, y) = \begin{pmatrix} g_1(x, y) \\ g_2(x, y) \\ \vdots \\ g_n(x, y) \end{pmatrix},
\]

where each \(g_j(x, y), j = 1, 2, \ldots, n, \) is a real valued function.

We start with the following assertion, which will be needed in the proof of Lemma 2.3.

Lemma 2.2 The set of functions

\[
\mathcal{F} = \{ g_j(x(t), \phi_{x(t)}(t)) - g_j(\bar{x}(t), \phi_{\bar{x}(t)}(t)) \mid 1 \leq j \leq n, x(t) \in \mathcal{A}_x, \bar{x}(t) \in \mathcal{A}_x \}
\]

is an equicontinuous family on \(\mathbb{R} \).

Proof Let us define a function \(h : \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n \) by the formula

\[
h(x_1, x_2, x_3) = g(x_1, x_3) - g(x_2, x_3).
\]

Being continuous on the compact region

\[
\mathcal{D} = \{ (x_1, x_2, x_3) \in \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n \mid \|x_1\| \leq H, \|x_2\| \leq H, \|x_3\| \leq M \},
\]

the function \(h(x_1, x_2, x_3) \) is uniformly continuous on \(\mathcal{D} \).

Fix an arbitrary positive number \(\epsilon \). There exists a number \(\delta_1 = \delta_1(\epsilon) > 0 \) such that for all \((x_1^0, x_2^0, x_3^0), (x_1^1, x_2^1, x_3^1) \in \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n \) with

\[
\| (x_1^0, x_2^0, x_3^0) - (x_1^1, x_2^1, x_3^1) \| < \delta_1,
\]
the inequality
\[\left\| h \left(x_1^0, x_2^0, x_3^0 \right) - h \left(x_1^1, x_2^1, x_3^1 \right) \right\| < \varepsilon \]
holds.

Since \(\| x'(t) \| \leq H_0 \) for each \(x(t) \in \mathcal{A}_x \), the set \(\mathcal{A}_x \) is an equicontinuous family on \(\mathbb{R} \). Therefore, there exists a number \(\delta_2 = \delta_2(\delta_1) > 0 \) such that for all \(t_1, t_2 \in \mathbb{R} \) satisfying \(|t_1 - t_2| < \delta_2 \) we have \(\| x(t_1) - x(t_2) \| < \delta_1/3 \) for all \(x(t) \in \mathcal{A}_x \).

Similarly, the set \(\mathcal{A}_y \) is also an equicontinuous family on \(\mathbb{R} \), since \(\| y'(t) \| \leq \| A \| M + M_0 \) for each \(y(t) \in \mathcal{A}_y \). Thus, one can find a number \(\delta_3 = \delta_3(\delta_1) > 0 \) such that for all \(t_1, t_2 \in \mathbb{R} \) with \(|t_1 - t_2| < \delta_3 \), the inequality \(\| y(t_1) - y(t_2) \| < \delta_1/3 \) is valid for all \(y(t) \in \mathcal{A}_y \).

In this case, for all \(t_1, t_2 \in \mathbb{R} \) with \(|t_1 - t_2| < \min \{ \delta_2, \delta_3 \} \), one has
\[
\left\| \left(x(t_1), \overline{x}(t_1), \phi_{x(t_1)}(t_1) \right) - \left(x(t_2), \overline{x}(t_2), \phi_{x(t_2)}(t_2) \right) \right\|
\leq \| x(t_1) - x(t_2) \| + \| \overline{x}(t_1) - \overline{x}(t_2) \| + \| \phi_{x(t_1)}(t_1) - \phi_{x(t_2)}(t_2) \| < \delta_1,
\]
for all \(x(t), \overline{x}(t) \in \mathcal{A}_x \).

Hence, taking \(\delta = \min \{ \delta_2, \delta_3 \} \), one can confirm for all \(t_1, t_2 \in \mathbb{R} \) with \(|t_1 - t_2| < \delta \) that the inequality
\[
\left\| \left(g_j(x(t_1), \phi_{x(t)}(t_1)) - g_j(\overline{x}(t_1), \phi_{x(t)}(t_1)) \right)
- \left(g_j(x(t_2), \phi_{x(t)}(t_2)) - g_j(\overline{x}(t_2), \phi_{x(t)}(t_2)) \right) \right\|
\leq \left\| h \left(x(t_1), \overline{x}(t_1), \phi_{x(t)}(t_1) \right) - h \left(x(t_2), \overline{x}(t_2), \phi_{x(t)}(t_2) \right) \right\|
< \varepsilon
\]
holds for each \(j = 1, 2, \ldots, n \) and \(x(t), \overline{x}(t) \in \mathcal{A}_x \). Consequently, the family \(\mathcal{F} \) is equicontinuous on \(\mathbb{R} \). \(\square \)

We continue with replication of sensitivity in the next lemma.

Lemma 2.3 Sensitivity of the set \(\mathcal{A}_x \) implies the same feature for the set \(\mathcal{A}_y \).

Proof Fix an arbitrary \(\delta > 0 \) and let \(y(t) \in \mathcal{A}_y \) be a given solution of system (2.1.2). In this case, there exists \(x(t) \in \mathcal{A}_x \) such that \(y(t) = \phi_{x(t)}(t) \).

Let us choose a number \(\overline{\varepsilon} = \overline{\varepsilon}(\delta) > 0 \) small enough which satisfies the inequality
\[
\left(1 + \frac{NL_2}{\omega - NL_3} \right) \overline{\varepsilon} < \delta.
\]

Then take \(R = R(\overline{\varepsilon}) < 0 \) sufficiently large in absolute value such that
\[
\frac{2M_0N}{\omega} e^{(\omega - NL_3)R} < \overline{\varepsilon},
\]
and let \(\delta_1 = \delta_1(\varepsilon, R) = \varepsilon e^{L_0R} \). Since the set of functions \(\mathcal{A}_x \) is sensitive, there exist positive numbers \(\varepsilon_0 \) and \(\Delta \) such that the inequalities \(\|x(t_0) - \overline{x}(t_0)\| < \delta_1 \) and \(\|x(t) - \overline{x}(t)\| > \varepsilon_0, \ t \in J \), hold for some solution \(\overline{x}(t) \in \mathcal{A}_x \), a number \(t_0 \in \mathbb{R} \) and an interval \(J \subset [t_0, \infty) \) whose length is not less than \(\Delta \).

Using the couple of integral equations

\[
x(t) = x(t_0) + \int_{t_0}^{t} F(s, x(s))ds,
\]

\[
\overline{x}(t) = \overline{x}(t_0) + \int_{t_0}^{t} F(s, \overline{x}(s))ds
\]

together with condition \((A2)\), one can see that the inequality

\[
\|x(t) - \overline{x}(t)\| \leq \|x(t_0) - \overline{x}(t_0)\| + \left| \int_{t_0}^{t} L_0 \|x(s) - \overline{x}(s)\| ds \right|
\]

holds for \(t \in [t_0 + R, t_0] \). Applying the Gronwall–Bellman inequality [2], we obtain that

\[
\|x(t) - \overline{x}(t)\| \leq \|x(t_0) - \overline{x}(t_0)\| e^{L_0|t-t_0|}
\]

and therefore \(\|x(t) - \overline{x}(t)\| < \varepsilon \) for \(t \in [t_0 + R, t_0] \).

Let us denote \(\overline{y}(t) = \phi_{\overline{x}(t)}(t) \). First, we will show that \(\|y(t_0) - \overline{y}(t_0)\| < \delta \).

The functions \(y(t) \) and \(\overline{y}(t) \) satisfy the relations

\[
y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s))ds
\]

and

\[
\overline{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} g(\overline{x}(s), \overline{y}(s))ds,
\]

respectively. Therefore,

\[
y(t) - \overline{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(\overline{x}(s), \overline{y}(s))]ds
\]

and hence we obtain that
\[\| y(t) - \overline{y}(t) \| \leq \int_{t_0+R}^t Ne^{-\omega(t-s)} \| g(x(s), y(s)) - g(x(s), \overline{y}(s)) \| \, ds \]
\[+ \int_{t_0+R}^t Ne^{-\omega(t-s)} \| g(x(s), \overline{y}(s)) - g(\overline{x}(s), \overline{y}(s)) \| \, ds \]
\[+ \int_{-\infty}^{t_0+R} Ne^{-\omega(t-s)} \| g(x(s), y(s)) - g(\overline{x}(s), \overline{y}(s)) \| \, ds. \]

Since \(\| x(t) - \overline{x}(t) \| < \overline{\varepsilon} \) for \(t \in [t_0 + R, t_0] \), one has
\[\| y(t) - \overline{y}(t) \| \leq NL_3 \int_{t_0+R}^t e^{-\omega(t-s)} \| y(s) - \overline{y}(s) \| \, ds \]
\[+ \frac{NL_2 \overline{\varepsilon}}{\omega} e^{-\omega t} (e^{\omega t} - e^{\omega(t_0+R)}) + \frac{2M_0N}{\omega} e^{-\omega(t-t_0-R)}. \]

Now, let us introduce the functions \(u(t) = e^{\omega t} \| y(t) - \overline{y}(t) \| \), \(k(t) = \frac{NL_2 \overline{\varepsilon}}{\omega} e^{\omega t} \)
and \(h(t) = c + k(t) \), where \(c = \left(\frac{2M_0N}{\omega} - \frac{NL_2 \overline{\varepsilon}}{\omega} \right) e^{\omega(t_0+R)} \).

These definitions give us the inequality
\[u(t) \leq h(t) + \int_{t_0+R}^t NL_3 u(s) \, ds. \]

Applying Lemma 2.2 [20] to the last inequality, we achieve that
\[u(t) \leq h(t) + NL_3 \int_{t_0+R}^t e^{NL_3(t-s)} h(s) \, ds. \]

Therefore, on the time interval \([t_0 + R, t_0]\), the inequality
\[u(t) \leq c + k(t) + c \left(e^{NL_3(t-t_0-R)} - 1 \right) \]
\[+ \frac{N^2L_2L_3 \overline{\varepsilon}}{\omega} e^{NL_3t} \int_{t_0+R}^t e^{(\omega-NL_3)s} \, ds \]
\[= \frac{NL_2 \overline{\varepsilon}}{\omega} e^{\omega t} + \left(\frac{2M_0N}{\omega} - \frac{NL_2 \overline{\varepsilon}}{\omega} \right) e^{\omega R} e^{NL_3(t-t_0-R)} \]
\[+ \frac{N^2L_2L_3 \overline{\varepsilon}}{\omega(\omega - NL_3)} e^{\omega t} \left[1 - e^{(NL_3-\omega)(t-t_0-R)} \right] \]
holds.

The last inequality leads to
\[\| y(t) - \overline{y}(t) \| \leq \frac{NL_2E}{\omega - NL_3} + \frac{2M_0N}{\omega} e^{(NL_3 - \omega)(t - t_0 - R)}, \]

and consequently we obtain that

\[\| y(t_0) - \overline{y}(t_0) \| \leq \frac{NL_2E}{\omega - NL_3} + \frac{2M_0N}{\omega} e^{(\omega - NL_3)R} \]

\[< \left(1 + \frac{NL_2}{\omega - NL_3} \right) \varepsilon \]

\[< \delta. \]

In the remaining part of the proof, we will show the existence of a positive number \(\varepsilon_1 \) and an interval \(J^1 \subset J \), with a fixed length which is independent of \(y(t), \overline{y}(t) \in \mathcal{A}_x \), such that the inequality \(\| y(t) - \overline{y}(t) \| > \varepsilon_1 \) holds for all \(t \in J^1 \).

According to Lemma 2.2, there exists a positive number \(\tau < \Delta \), independent of the functions \(x(t), x(t) \in \mathcal{A}_x, y(t), \overline{y}(t) \in \mathcal{A}_y \), such that for any \(t_1, t_2 \in \mathbb{R} \) with \(|t_1 - t_2| < \tau \) the inequality

\[\left| \left(g_j (x(t_1), y(t_1)) - g_j (x(t_2), y(t_2)) \right) \right| \]

\[< \frac{L_1 \varepsilon_0}{2n} \]

holds, for all \(1 \leq j \leq n \).

Condition (A4) implies that, for all \(t \in J \), the inequality

\[\| g(x(t), y(t)) - g(x(t), y(t)) \| \geq L_1 \| x(t) - \overline{x}(t) \| \]

is satisfied. Therefore, for each \(t \in J \), there exists an integer \(j_0 = j_0(t), 1 \leq j_0 \leq n \), such that

\[\left| g_{j_0} (x(t), y(t)) - g_{j_0} (x(t), y(t)) \right| \geq \frac{L_1}{n} \| x(t) - \overline{x}(t) \|. \]

Otherwise, if there exists \(s \in J \) such that for all \(1 \leq j \leq n \), the inequality

\[\left| g_j (x(s), y(s)) - g_j (\overline{x}(s), y(s)) \right| < \frac{L_1}{n} \| x(s) - \overline{x}(s) \| \]

holds, then one encounters with a contradiction since

\[\| g(x(s), y(s)) - g(\overline{x}(s), y(s)) \| \leq \sum_{j=1}^{n} \left| g_j (x(s), y(s)) - g_j (\overline{x}(s), y(s)) \right| \]

\[< L_1 \| x(s) - \overline{x}(s) \|. \]
Now, let s_0 be the midpoint of the interval J and $\theta = s_0 - \tau/2$. One can find an integer $j_0 = j_0(s_0)$, $1 \leq j_0 \leq n$, such that

$$ |g_{j_0}(x(s_0), y(s_0)) - g_{j_0}(\bar{x}(s_0), y(s_0))| \geq \frac{L_1}{n} \|x(s_0) - \bar{x}(s_0)\| > \frac{L_1\varepsilon_0}{n}. \quad (2.5.16) $$

On the other hand, making use of inequality (2.5.15), for all $t \in [\theta, \theta + \tau]$ we have

$$ |g_{j_0}(x(s_0), y(s_0)) - g_{j_0}(\bar{x}(s_0), y(s_0))| - |g_{j_0}(x(t), y(t)) - g_{j_0}(\bar{x}(t), y(t))| $$

$$ \leq \left| (g_{j_0}(x(t), y(t)) - g_{j_0}(\bar{x}(t), y(t))) - (g_{j_0}(x(s_0), y(s_0)) - g_{j_0}(\bar{x}(s_0), y(s_0))) \right| $$

$$ \leq \frac{L_1\varepsilon_0}{2n}. $$

Therefore, by means of (2.5.16), we obtain that the inequality

$$ |g_{j_0}(x(t), y(t)) - g_{j_0}(\bar{x}(t), y(t))| $$

$$ > |g_{j_0}(x(s_0), y(s_0)) - g_{j_0}(\bar{x}(s_0), y(s_0))| - \frac{L_1\varepsilon_0}{2n} \quad (2.5.17) $$

holds for all $t \in [\theta, \theta + \tau]$.

By applying the mean value theorem for integrals, one can find $s_1, s_2, \ldots, s_n \in [\theta, \theta + \tau]$ such that

$$ \int_{\theta}^{\theta+\tau} [g(x(s), y(s)) - g(\bar{x}(s), y(s))] \, ds $$

$$ = \left(\begin{array}{c}
\tau [g_1(x(s_1), y(s_1)) - g_1(\bar{x}(s_1), y(s_1))] \\
\tau [g_2(x(s_2), y(s_2)) - g_2(\bar{x}(s_2), y(s_2))] \\
\vdots \\
\tau [g_n(x(s_n), y(s_n)) - g_n(\bar{x}(s_n), y(s_n))]
\end{array} \right). $$

Thus, using (2.5.17), one can verify that

$$ \left\| \int_{\theta}^{\theta+\tau} [g(x(s), y(s)) - g(\bar{x}(s), y(s))] \, ds \right\| $$

$$ \geq \tau \left| g_{j_0}(x(s_{j_0}), y(s_{j_0})) - g_{j_0}(\bar{x}(s_{j_0}), y(s_{j_0})) \right| $$

$$ > \frac{\tau L_1\varepsilon_0}{2n}. \quad (2.5.18) $$

It is clear that, for $t \in [\theta, \theta + \tau]$, the solutions $y(t)$ and $\bar{y}(t)$ satisfy the integral equations
Replication of Continuous Chaos About Equilibria

\[y(t) = y(\theta) + \int_{\theta}^{t} A y(s) ds + \int_{\theta}^{t} g(x(s), y(s)) ds, \]

and

\[\overline{y}(t) = \overline{y}(\theta) + \int_{\theta}^{t} A \overline{y}(s) ds + \int_{\theta}^{t} g(\overline{x}(s), \overline{y}(s)) ds, \]

respectively, and herewith the equation

\[y(t) - \overline{y}(t) = (y(\theta) - \overline{y}(\theta)) + \int_{\theta}^{t} A (y(s) - \overline{y}(s)) ds \]

\[+ \int_{\theta}^{t} [g(x(s), y(s)) - g(\overline{x}(s), y(s))] ds \]

\[+ \int_{\theta}^{t} [g(\overline{x}(s), y(s)) - g(\overline{x}(s), \overline{y}(s))] ds \]

holds. Hence, we have the inequality

\[\| y(\theta + \tau) - \overline{y}(\theta + \tau) \| \geq \| \int_{\theta}^{\theta + \tau} [g(x(s), y(s)) - g(\overline{x}(s), y(s))] ds \| \]

\[- \| y(\theta) - \overline{y}(\theta) \| - \int_{\theta}^{\theta + \tau} \| A \| \| y(s) - \overline{y}(s) \| ds \]

\[- \int_{\theta}^{\theta + \tau} L_3 \| y(s) - \overline{y}(s) \| ds. \]

(2.5.19)

Now, assume that \(\max_{t \in [\theta, \theta + \tau]} \| y(t) - \overline{y}(t) \| \leq \frac{\tau L_1 \varepsilon_0}{2n(2 + \tau (L_3 + \| A \|))} \). In the present case, one encounters with a contradiction since, by means of the inequalities (2.5.18) and (2.5.19), we have

\[\max_{t \in [\theta, \theta + \tau]} \| y(t) - \overline{y}(t) \| \geq \| y(\theta + \tau) - \overline{y}(\theta + \tau) \| \]

\[> \frac{\tau L_1 \varepsilon_0}{2n} - [1 + \tau (L_3 + \| A \|)] \max_{t \in [\theta, \theta + \tau]} \| y(t) - \overline{y}(t) \| \]

\[\geq \frac{\tau L_1 \varepsilon_0}{2n(2 + \tau (L_3 + \| A \|))}. \]

Therefore, one can see that the inequality

\[\max_{t \in [\theta, \theta + \tau]} \| y(t) - \overline{y}(t) \| > \frac{\tau L_1 \varepsilon_0}{2n(2 + \tau (L_3 + \| A \|))} \]

is valid.
Suppose that at a point \(\eta \in [\theta, \theta + \tau] \), the real valued function \(\| y(t) - \overline{y}(t) \| \) takes its maximum on the interval \([\theta, \theta + \tau] \). That is,

\[
\max_{t \in [\theta, \theta + \tau]} \| y(t) - \overline{y}(t) \| = \| y(\eta) - \overline{y}(\eta) \|.
\]

For \(t \in [\theta, \theta + \tau] \), by virtue of the integral equations

\[
y(t) = y(\eta) + \int_{\eta}^{t} A y(s) \, ds + \int_{\eta}^{t} g(x(s), y(s)) \, ds,
\]

and

\[
\overline{y}(t) = \overline{y}(\eta) + \int_{\eta}^{t} A \overline{y}(s) \, ds + \int_{\eta}^{t} g(\overline{x}(s), \overline{y}(s)) \, ds,
\]

we obtain

\[
y(t) - \overline{y}(t) = (y(\eta) - \overline{y}(\eta)) + \int_{\eta}^{t} A(y(s) - \overline{y}(s)) \, ds
\]

\[+ \int_{\eta}^{t} [g(x(s), y(s)) - g(\overline{x}(s), \overline{y}(s))] \, ds.
\]

Define

\[
\tau^1 = \min \left\{ \frac{\tau}{2}, \frac{\tau L_1 \varepsilon_0}{8n(M \|A\| + M_0)[2 + \tau(L_3 + \|A\|)]} \right\}
\]

and let

\[
\theta^1 = \begin{cases}
\eta, & \text{if } \eta \leq \theta + \tau/2 \\
\eta - \tau^1, & \text{if } \eta > \theta + \tau/2.
\end{cases}
\]

We note that the interval \(J^1 = [\theta^1, \theta^1 + \tau^1] \) is a subset of \([\theta, \theta + \tau]\) and hence of \(J \).

For \(t \in J^1 \), we have that

\[
\| y(t) - \overline{y}(t) \| \geq \| y(\eta) - \overline{y}(\eta) \| - \left| \int_{\eta}^{t} \| A \| \| y(s) - \overline{y}(s) \| \, ds \right|
\]

\[\geq \frac{\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]} - 2\tau^1(M \|A\| + M_0)
\]

\[\geq \frac{\tau L_1 \varepsilon_0}{4n[2 + \tau(L_3 + \|A\|)]}.
\]

Consequently, the inequality \(\| y(t) - \overline{y}(t) \| > \varepsilon_1 \) holds for \(t \in J^1 \), where
\[\varepsilon_1 = \frac{\tau L_1 \varepsilon_0}{4n(2 + \tau (L_3 + \|A\|))}, \]

and the length of the interval \(J^1 \) does not depend on the functions \(x(t), \bar{x}(t) \in \mathcal{A}_x \).

The proof of the lemma is finalized. \(\square \)

Through Lemma 2.3, we mention the replication of sensitivity feature from the set of functions \(\mathcal{A}_x \) to \(\mathcal{A}_y \), that is, from the generator system to the replicator counterpart. In a similar way, it is reasonable to analyze the sensitivity of the set of functions \(\mathcal{A} \), which is defined through Eq. (2.2.11). In the present case, we shall say that the set \(\mathcal{A} \) is sensitive provided that \(\mathcal{A}_y \) is sensitive. This description is a natural one since, otherwise, the inequality \(\|x(t) - \bar{x}(t)\| > \varepsilon_0 \) implies that \(\| (x(t), \phi_x(t)) - (\bar{x}(t), \phi_{\bar{x}}(t)) \| > \varepsilon_0 \) in the same interval of time, which already signifies sensitivity of \(\mathcal{A} \). But in replication of chaos, the crucial idea is the extension of sensitivity not only by the result-system, but also by the replicator, and one should understand sensitivity of the result-system as a property which is equivalent to the sensitivity of the replicator. According to this explanation, we note that if \(\mathcal{A}_x \) is sensitive, then Lemma 2.3 implies the same feature for the set \(\mathcal{A}_y \), and hence for the set \(\mathcal{A} \).

Now, let us illustrate the replication of sensitivity through an example. It is known that the Lorenz system

\begin{align*}
x'_1 &= \sigma (-x_1 + x_2) \\
x'_2 &= -x_2 + rx_1 - x_1 x_3 \\
x'_3 &= -b x_3 + x_1 x_2,
\end{align*}

with the coefficients \(\sigma = 10, \ b = 8/3, \ r = 28 \) admits sensitivity [21]. We use system (2.5.20) with the specified coefficients as the generator and constitute the 6-dimensional result-system

\begin{align*}
x'_4 &= 10(-x_1 + x_2) \\
x'_5 &= -x_2 + 28 x_1 - x_1 x_3 \\
x'_6 &= -\frac{8}{3} x_3 + x_1 x_2 \\
x'_7 &= -5 x_4 + x_3 \\
x'_8 &= -2 x_5 + 0.0002(x_2 - x_5)^3 + 4 x_2 \\
x'_9 &= -3 x_6 - 3 x_1.
\end{align*}

When system (2.5.21) is considered in the form of system (2.1.1) + (2.1.2), one can see that the diagonal matrix \(A \) whose entries on the diagonal are \(-5, -2, -3\) satisfies the inequality \(\| e^{At} \| \leq N e^{-\omega t} \) with the coefficients \(N = 1 \) and \(\omega = 2 \). We note that the function \(g : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 \) defined as

\[g(x_1, x_2, x_3, x_4, x_5, x_6) = \left(x_3, 0.0002(x_2 - x_5)^3 + 4 x_2, -3 x_1 \right) \]
2.5 Replication of Devaney’s Chaos

The sensitivity property is observable both in (a) and (b) such that the trajectories presented by blue and red colors move together in the first stage and then diverge. In other words, the sensitivity property of the generator system is mimicked by the replicator counterpart provides the conditions (A4) and (A5) with constants $L_1 = 1/\sqrt{3}$, $L_2 = 11\sqrt{3}/2$ and $L_3 = 3/2$ since the chaotic attractor of system (2.5.21) is inside a compact region such that $|x_2| \leq 30$ and $|x_5| \leq 50$. Consequently, system (2.5.21) satisfies the condition (A7).

In Fig. 2.3, one can see the 3-dimensional projections in the $x_1 - x_2 - x_3$ and $x_4 - x_5 - x_6$ spaces of two different trajectories of the result-system (2.5.21) with adjacent initial conditions, such that one of them is in blue color and the other in red color. For the trajectory with blue color, we make use of the initial data $x_1(0) = -8.57$, $x_2(0) = -2.39$, $x_3(0) = 33.08$, $x_4(0) = 5.32$, $x_5(0) = 10.87$, $x_6(0) = -6.37$ and for the one with red color, we use the initial data $x_1(0) = -8.53$, $x_2(0) = -2.47$, $x_3(0) = 33.05$, $x_4(0) = 5.33$, $x_5(0) = 10.86$, $x_6(0) = -6.36$. In the simulation, the trajectories move on the time interval $[0, 3]$. The results seen in Fig. 2.3 supports our theoretical results indicated in Lemma 2.3 such that the replicator system, likewise the generator counterpart, admits the sensitivity feature. That is, the solutions of both the generator and the replicator given by blue and red colors diverge, even though they start and move close to each other in the first stage.

In the next assertion we continue with the replication of transitivity.

Lemma 2.4 Transitivity of \mathcal{A}_x implies the same feature for \mathcal{A}_y.

Proof Fix an arbitrary small $\varepsilon > 0$, an arbitrary large $E > 0$ and let $y(t) \in \mathcal{A}_y$ be a given function. Arising from the description (2.2.10) of the set \mathcal{A}_y, there exists a function $x(t) \in \mathcal{A}_x$ such that $y(t) = \phi_{x(t)}(t)$. Let $\gamma = \frac{\omega(\omega - NL_3)}{2M_0N(\omega - NL_3) + NL_2\omega}$. Condition (A7) guarantees that γ is positive. Since there exists a dense solution $x^*(t) \in \mathcal{A}_x$, one can find $\xi > 0$ and an interval $J \subset \mathbb{R}$ with length E such that $\|x(t) - x^*(t + \xi)\| < \gamma\varepsilon$ for all $t \in J$. Without loss of generality, assume that J is a closed interval, that is, $J = [a, a + E]$ for some real number a.

![Fig. 2.3 Replication of sensitivity in the result-system (2.5.21). (a) 3-dimensional projection in the $x_1 - x_2 - x_3$ space. (b) 3-dimensional projection in the $x_4 - x_5 - x_6$ space. The sensitivity property is observable both in (a) and (b) such that the trajectories presented by blue and red colors move together in the first stage and then diverge. In other words, the sensitivity property of the generator system is mimicked by the replicator counterpart.](image)
Let \(y^*(t) = \phi_{x^*}(t) \). For \(t \in J \), the bounded on \(\mathbb{R} \) solutions \(y(t) \) and \(y^*(t) \) satisfy the relations

\[
y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s)) ds,
\]

and

\[
y^*(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x^*(s), y^*(s)) ds,
\]

respectively. The second equation above implies that

\[
y^*(t + \xi) = \int_{-\infty}^{t+\xi} e^{A(t+\xi-s)} g(x^*(s), y^*(s)) ds.
\]

Using the transformation \(\bar{s} = s - \xi \), and replacing \(\bar{s} \) by \(s \) again, it is easy to verify that

\[
y^*(t + \xi) = \int_{-\infty}^{t} e^{A(t-s)} g(x^*(s + \xi), y^*(s)) ds.
\]

Therefore, for \(t \in J \), we have that

\[
y(t) - y^*(t + \xi) = \int_{-\infty}^{a} e^{A(t-s)} [g(x(s), y(s)) - g(x^*(s + \xi), y^*(s + \xi))] ds \\
+ \int_{a}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(x(s), y^*(s + \xi))] ds \\
+ \int_{a}^{t} e^{A(t-s)} [g(x(s), y^*(s)) - g(x^*(s + \xi), y^*(s + \xi))] ds,
\]

which implies the inequality

\[
\|y(t) - y^*(t + \xi)\| \leq \int_{-\infty}^{a} 2M_0 N e^{-\omega(t-s)} ds \\
+ \int_{a}^{t} NL_3 e^{-\omega(t-s)} \|y(s) - y^*(s + \xi)\| ds \\
+ \int_{a}^{t} NL_2 e^{-\omega(t-s)} \|x(s) - x^*(s + \xi)\| ds \\
\leq \frac{2M_0 N}{\omega} e^{-\omega(t-a)} + \frac{NL_2 \gamma \xi}{\omega} e^{-\omega t} (e^{\omega t} - e^{\omega a}) \\
+ \int_{a}^{t} NL_3 e^{-\omega(t-s)} \|y(s) - y^*(s + \xi)\| ds.
\]
Hence, we get

\[e^{\omega t} \| y(t) - y^*(t + \xi) \| \leq \frac{2M_0 N}{\omega} e^{\omega a} + \frac{NL_2 \gamma \varepsilon}{\omega} (e^{\omega t} - e^{\omega a}) \]

\[+ \int_a^t NL_3 e^{\omega s} \| y(s) - y^*(s + \xi) \| ds. \]

Through the implementation of Lemma 2.2 [20] to the last inequality, we obtain

\[e^{\omega t} \| y(t) - y^*(t + \xi) \| \leq \frac{2M_0 N}{\omega} e^{\omega a} + \frac{NL_2 \gamma \varepsilon}{\omega} (e^{\omega t} - e^{\omega a}) \]

\[+ \int_a^t NL_3 \left[\frac{2M_0 N}{\omega} e^{\omega a} + \frac{NL_2 \gamma \varepsilon}{\omega} (e^{\omega s} - e^{\omega a}) \right] e^{NL_3(t-s)} ds \]

\[= \frac{NL_2 \gamma \varepsilon}{\omega} e^{\omega t} + \left(\frac{2M_0 N}{\omega} - \frac{NL_2 \gamma \varepsilon}{\omega} \right) e^{\omega a} e^{NL_3(t-a)} \]

\[+ \frac{NL_2 \gamma \varepsilon}{\omega(\omega - NL_3)} e^{NL_3 t} \left(e^{(\omega - NL_3)t} - e^{(\omega - NL_3)a} \right). \]

Multiplying both sides by \(e^{-\omega t} \), one can attain that

\[\| y(t) - y^*(t) \| \leq \frac{2M_0 N}{\omega} e^{(NL_3 - \omega)(t-a)} \]

\[+ \left(\frac{NL_2 \gamma \varepsilon}{\omega} + \frac{NL_2 \gamma \varepsilon}{\omega(\omega - NL_3)} \right) \left(1 - e^{(NL_3 - \omega)(t-a)} \right) \]

\[= \frac{2M_0 N}{\omega} e^{(NL_3 - \omega)(t-a)} + \frac{NL_2 \gamma \varepsilon}{\omega - NL_3} \left(1 - e^{(NL_3 - \omega)(t-a)} \right). \]

Now, suppose that the number \(E \) is sufficiently large such that

\[E > \frac{2}{\omega - NL_3} \ln \left(\frac{1}{\gamma \varepsilon} \right). \]

If \(t \in [a + E/2, a + E] \), then it is true that

\[e^{(NL_3 - \omega)(t-a)} \leq e^{(NL_3 - \omega)E \xi} < \gamma \varepsilon. \]

As a result, we have

\[\| y(t) - y^*(t + \xi) \| < \left[\frac{2M_0 N}{\omega} + \frac{NL_2}{\omega - NL_3} \right] \gamma \varepsilon = \varepsilon, \]

for \(t \in J_1 = [a_1, a_1 + E_1] \), where \(a_1 = a + E/2 \) and \(E_1 = E/2 \). Consequently, the set \(\mathcal{A}_x \) is transitive in compliance with Definition 2.3.
The lemma is proved. □

The extension of the last ingredient of chaos in the sense of Devaney is presented in the following lemma:

Lemma 2.5 If \mathcal{A}_x admits a dense collection of periodic functions, then the same is true for \mathcal{A}_y.

Proof Fix a function $y(t) = \phi_{x(t)}(t) \in \mathcal{A}_y$, an arbitrary small number $\varepsilon > 0$ and an arbitrary large number $E > 0$. Let $\gamma = \frac{\omega (\omega - NL_3)}{2M_0N(\omega - NL_3) + NL_2\omega}$, which is a positive number by condition (A7). Suppose that G_x is a dense collection of periodic functions inside \mathcal{A}_x. In this case, there exist $\tilde{x}(t) \in G_x$ and an interval $J \subset \mathbb{R}$ with length E such that $\|x(t) - \tilde{x}(t)\| < \gamma \varepsilon$, for all $t \in J$. Without loss of generality, assume that J is a closed interval, that is, $J = [a, a + E]$ for some $a \in \mathbb{R}$.

We note that by condition (A4) there is a one-to-one correspondence between the sets \mathcal{G}_x and

$$\mathcal{G}_y = \{ \phi_{x(t)}(t) \mid x(t) \in \mathcal{G}_x \},$$

such that if $x(t) \in \mathcal{G}_x$ is periodic then $\phi_{x(t)}(t) \in \mathcal{G}_y$ is also periodic with the same period, and vice versa. Therefore, $\mathcal{G}_y \subset \mathcal{A}_y$ is a collection of periodic functions and in the proof our aim is to verify that the set \mathcal{G}_y is dense in \mathcal{A}_y.

Let $\tilde{y}(t) = \phi_{\tilde{x}(t)}(t)$, which clearly belongs to the set \mathcal{G}_y. Making use of the relations

$$y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s)) ds,$$

and

$$\tilde{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} g(\tilde{x}(s), \tilde{y}(s)) ds,$$

for $t \in J$, we attain that

$$y(t) - \tilde{y}(t) = \int_{-\infty}^{a} e^{A(t-s)} [g(x(s), y(s)) - g(\tilde{x}(s), \tilde{y}(s))] ds$$

$$+ \int_{a}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(x(s), \tilde{y}(s))] ds$$

$$+ \int_{a}^{t} e^{A(t-s)} [g(x(s), \tilde{y}(s)) - g(\tilde{x}(s), \tilde{y}(s))] ds.$$

The last equation implies that
\[\| y(t) - \tilde{y}(t) \| \leq \int_{-\infty}^{a} 2M_0 N e^{-\omega(t-s)} ds \]

\[+ \int_{a}^{t} NL_3 e^{-\omega(t-s)} \| y(s) - \tilde{y}(s) \| ds \]

\[+ \int_{a}^{t} NL_2 e^{-\omega(t-s)} \| x(s) - \tilde{x}(s) \| ds \]

\[\leq \frac{2M_0 N}{\omega} e^{-\omega(t-a)} + \frac{NL_2 \gamma \varepsilon}{\omega} e^{-\omega t} \left(e^{\omega t - \omega a} - e^{\omega t} \right) \]

\[+ \int_{a}^{t} NL_3 e^{-\omega(t-s)} \| y(s) - \tilde{y}(s) \| ds. \]

Hence, we have

\[e^{\omega t} \| y(t) - \tilde{y}(t) \| \leq \frac{2M_0 N}{\omega} e^{\omega a} + \frac{NL_2 \gamma \varepsilon}{\omega} \left(e^{\omega t - \omega a} - e^{\omega t} \right) \]

\[+ \int_{a}^{t} NL_3 e^{\omega s} \| y(s) - \tilde{y}(s) \| ds. \]

Application of Lemma 2.2 [20] to the last inequality yields

\[e^{\omega t} \| y(t) - \tilde{y}(t) \| \leq \frac{2M_0 N}{\omega} e^{\omega a} + \frac{NL_2 \gamma \varepsilon}{\omega} \left(e^{\omega t - \omega a} - e^{\omega t} \right) \]

\[+ \int_{a}^{t} NL_3 \left[\frac{2M_0 N}{\omega} e^{\omega a} + \frac{NL_2 \gamma \varepsilon}{\omega} \left(e^{\omega s} - e^{\omega t} \right) \right] e^{NL_3(t-s)} ds \]

\[= \frac{NL_2 \gamma \varepsilon}{\omega} e^{\omega t} + \left(\frac{2M_0 N}{\omega} - \frac{NL_2 \gamma \varepsilon}{\omega} \right) e^{\omega a} e^{NL_3(t-a)} \]

\[+ \frac{NL_2 \gamma \varepsilon}{\omega (\omega - NL_3)} e^{NL_3 t} \left(e^{(\omega - NL_3)t} - e^{(\omega - NL_3)a} \right). \]

Multiplying both sides by \(e^{-\omega t} \), we obtain that

\[\| y(t) - \tilde{y}(t) \| \leq \frac{2M_0 N}{\omega} e^{(NL_3 - \omega)(t-a)} \]

\[+ \left(\frac{NL_2 \gamma \varepsilon}{\omega} + \frac{NL_2 \gamma \varepsilon}{\omega (\omega - NL_3)} \right) \left(1 - e^{(NL_3 - \omega)(t-a)} \right) \]

\[= \frac{2M_0 N}{\omega} e^{(NL_3 - \omega)(t-a)} + \frac{NL_2 \gamma \varepsilon}{\omega - NL_3} \left(1 - e^{(NL_3 - \omega)(t-a)} \right). \]

Suppose that the number \(E \) is sufficiently large such that

\[E > \frac{2}{\omega - NL_3} \ln \left(\frac{1}{\gamma \varepsilon} \right). \]
If \(a + \frac{E}{2} \leq t \leq a + E \), then one has \(e^{(NL_3-\omega)(t-a)} \leq e^{(NL_3-\omega)E/2} < \gamma \varepsilon \). Consequently, the inequality

\[
\|y(t) - \tilde{y}(t)\| < \left(\frac{2M_0N}{\omega} + \frac{NL_2}{\omega - NL_3} \right) \gamma \varepsilon = \varepsilon,
\]

holds for \(t \in J_1 = [a_1, a_1 + E_1] \), where \(a_1 = a + E/2 \) and \(E_1 = E/2 \).

The proof of the lemma is accomplished. \(\square \)

We end up the present part by stating the following theorem and its immediate corollary, which can be verified as consequences of Lemmas 2.3, 2.4, and 2.5.

Theorem 2.2 If the set \(\mathcal{A}_x \) is Devaney’s chaotic, then the same is true for the set \(\mathcal{A}_y \).

Corollary 2.4 If the set \(\mathcal{A}_x \) is Devaney’s chaotic, then \(\mathcal{A} \) is chaotic in the same way.

In the next part, the replication of chaos in the Li–Yorke sense is taken into account.

2.6 Extension of Li–Yorke Chaos

Our aim in this section is to prove that if \(\mathcal{A}_x \) is chaotic in the sense of Li–Yorke, then the same is valid for the set \(\mathcal{A}_y \), and consequently for the set \(\mathcal{A} \).

We start by indicating the following assertion, which presents the replication of proximality feature in accordance with Definition 2.6.

Lemma 2.6 If a couple of functions \((x(t), \overline{x}(t)) \in \mathcal{A}_x \times \mathcal{A}_x\) is proximal, then the same is true for the couple \((\phi_x(t), \phi_{\overline{x}}(t)) \in \mathcal{A}_y \times \mathcal{A}_y\).

Proof Fix an arbitrary small positive number \(\varepsilon \) and an arbitrary large positive number \(E \). Define \(\gamma = \frac{2M_0N(\omega - NL_3) + NL_2\omega}{\omega(\omega - NL_3)} \). Condition (A7) implies that \(\gamma \) is positive. Because a given couple of functions \((x(t), \overline{x}(t)) \in \mathcal{A}_x \times \mathcal{A}_x\) is proximal, one can find a sequence of real numbers \(\{E_i\} \) satisfying \(E_i \geq E \) for each \(i \in \mathbb{N} \), and a sequence \(\{a_i\} \), \(a_i \to \infty \) as \(i \to \infty \), such that we have \(\|x(t) - \overline{x}(t)\| < \gamma \varepsilon \), for each \(t \) from the intervals \(J_i = [a_i, a_i + E_i] \), \(i \in \mathbb{N} \), and \(J_i \cap J_j = \emptyset \) whenever \(i \neq j \).

Let us fix an arbitrary natural number \(i \). Since the functions \(y(t) = \phi_x(t) \in \mathcal{A}_y \) and \(\overline{y}(t) = \phi_{\overline{x}}(t) \in \mathcal{A}_y \) satisfy the relations

\[
y(t) = \int_{-\infty}^{t} e^{A(t-s)} g(x(s), y(s)) ds,
\]

...
and

\[\overline{y}(t) = \int_{-\infty}^{t} e^{A(t-s)} g(\overline{x}(s), \overline{y}(s)) ds, \]

respectively, for \(t \in J_i \), we have that

\[
y(t) - \overline{y}(t) = \int_{-\infty}^{a_i} e^{A(t-s)} [g(x(s), y(s)) - g(\overline{x}(s), \overline{y}(s))] ds \\
+ \int_{a_i}^{t} e^{A(t-s)} [g(x(s), y(s)) - g(x(s), \overline{y}(s))] ds \\
+ \int_{a_i}^{t} e^{A(t-s)} [g(x(s), \overline{y}(s)) - g(\overline{x}(s), \overline{y}(s))] ds.
\]

This implies that the inequality

\[
\| y(t) - \overline{y}(t) \| \leq \int_{-\infty}^{a_i} 2M_0 Ne^{-\omega(t-s)} ds \\
+ \int_{a_i}^{t} NL_3 e^{-\omega(t-s)} \| y(s) - \overline{y}(s) \| ds \\
+ \int_{a_i}^{t} NL_2 e^{-\omega(t-s)} \| x(s) - \overline{x}(s) \| ds \\
\leq \frac{2M_0 N}{\omega} e^{-\omega(t-a)} + \frac{NL_2 \gamma \varepsilon}{\omega} e^{-\omega t} (e^{\omega t} - e^{\omega a}) \\
+ \int_{a_i}^{t} NL_3 e^{-\omega(t-s)} \| y(s) - \overline{y}(s) \| ds
\]

is valid. Hence, we attain that

\[
\omega e^{\omega t} \| y(t) - \overline{y}(t) \| \leq \frac{2M_0 N}{\omega} e^{\omega a_t} + \frac{NL_2 \gamma \varepsilon}{\omega} e^{-\omega a} (e^{\omega t} - e^{\omega a}) \\
+ \int_{a_i}^{t} NL_3 e^{\omega s} \| y(s) - \overline{y}(s) \| ds.
\]

Implementing Lemma 2.2 [20] to the last inequality, we obtain

\[
\omega e^{\omega t} \| y(t) - \overline{y}(t) \| \leq \frac{2M_0 N}{\omega} e^{\omega a_t} + \frac{NL_2 \gamma \varepsilon}{\omega} (e^{\omega t} - e^{\omega a}) \\
+ \int_{a_i}^{t} NL_3 \left[\frac{2M_0 N}{\omega} e^{\omega a_t} + \frac{NL_2 \gamma \varepsilon}{\omega} (e^{\omega s} - e^{\omega a}) \right] e^{NL_3(t-s)} ds \\
= \frac{NL_2 \gamma \varepsilon}{\omega} e^{\omega t} + \left(\frac{2M_0 N}{\omega} - \frac{NL_2 \gamma \varepsilon}{\omega} \right) e^{\omega a_t} e^{NL_3(t-a_i)}
\]
\[\frac{N^2 L_2 L_3 y \varepsilon}{\omega (\omega - NL_3)} e^{NL_3 t} \left(e^{(\omega - NL_3) t} - e^{(\omega - NL_3) a_1} \right).\]

Multiplying both sides by the term \(e^{-\omega t}\), one can verify that

\[\|y(t) - \bar{y}(t)\| \leq \frac{2M_0 N}{\omega} e^{(NL_3 - \omega)(t - a_1)} + \left(\frac{NL_2 y \varepsilon}{\omega} + \frac{N^2 L_2 L_3 y \varepsilon}{\omega (\omega - NL_3)} \right) \left(1 - e^{(NL_3 - \omega)(t - a_1)} \right) = \frac{2M_0 N}{\omega} e^{NL_3 - \omega)(t - a_1)} + \frac{NL_2 y \varepsilon}{\omega - NL_3} \left(1 - e^{(NL_3 - \omega)(t - a_1)} \right).\]

If \(E\) is sufficiently large such that \(E > \frac{2}{\omega - NL_3} \ln \left(\frac{1}{y \varepsilon} \right)\), then one has

\[e^{(NL_3 - \omega)(t - a_1)} < e^{(NL_3 - \omega) E_i/2} \leq e^{(NL_3 - \omega) E/2} < y \varepsilon,\]

for \(t \in [a_i + E_i/2, a_i + E_i]\).

Since the natural number \(i\) was arbitrarily chosen, for each \(i \in \mathbb{N}\), we have that

\[\|y(t) - \bar{y}(t)\| < \left(\frac{2M_0 N}{\omega} + \frac{NL_2}{\omega - NL_3} \right) y \varepsilon = \varepsilon,\]

for each \(t \in \tilde{J}_i = [\tilde{a}_i, \tilde{a}_i + \tilde{E}_i]\), where \(\tilde{a}_i = a_i + E_i/2\) and \(\tilde{E}_i = E_i/2\). Note that for each \(i\) the interval \(\tilde{J}_i \subset \mathbb{R}\) has a length no less than \(\tilde{E} = E/2\). As a consequence, the couple of functions \((\phi_{x(t)}(t), \phi_{\bar{x}(t)}(t)) \in \mathcal{A}_y \times \mathcal{A}_y\) is proximal according to Defintion 2.6.

The proof is completed. \(\Box\)

The following lemma indicates the replication of the next characteristic feature of Li–Yorke chaos.

Lemma 2.7 If a couple \((x(t), \bar{x}(t)) \in \mathcal{A}_x \times \mathcal{A}_x\) is frequently \((\varepsilon_0, \Delta)\)-separated for some positive numbers \(\varepsilon_0\) and \(\Delta\), then the couple \((\phi_{x(t)}(t), \phi_{\bar{x}(t)}(t)) \in \mathcal{A}_y \times \mathcal{A}_y\) is frequently \((\varepsilon_1, \bar{\Delta})\)-separated for some positive numbers \(\varepsilon_1\) and \(\bar{\Delta}\).

Proof Since a given couple of functions \((x(t), \bar{x}(t)) \in \mathcal{A}_x \times \mathcal{A}_x\) is frequently \((\varepsilon_0, \Delta)\)-separated for some \(\varepsilon_0 > 0\) and \(\Delta > 0\), there exist infinitely many disjoint intervals, each with a length no less than \(\Delta\), such that \(\|x(t) - \bar{x}(t)\| > \varepsilon_0\) for each \(t\) from these intervals. Without loss of generality, assume that these intervals are all closed subsets of \(\mathbb{R}\). In that case, one can find a sequence \(\{\Delta_i\}\) satisfying \(\Delta_i \geq \Delta\), \(i \in \mathbb{N}\), and a sequence \(\{d_i\}\), \(d_i \to \infty\) as \(i \to \infty\), such that for each \(i \in \mathbb{N}\) the inequality \(\|x(t) - \bar{x}(t)\| > \varepsilon_0\) holds for \(t \in J_i = [d_i, d_i + \Delta_i]\), and \(J_i \cap J_j = \emptyset\) whenever \(i \neq j\).

Throughout the proof, let us denote \(y(t) = \phi_{x(t)}(t) \in \mathcal{A}_y\) and \(\bar{y}(t) = \phi_{\bar{x}(t)}(t) \in \mathcal{A}_y\).
Our aim is to show the existence of positive numbers ε_1, Δ and infinitely many disjoint intervals $\overline{J}_i \subset J_i, i \in \mathbb{N}$, each with length Δ, such that the inequality

$$\|y(t) - \overline{y}(t)\| > \varepsilon_1$$

holds for each t from the intervals $\overline{J}_i, i \in \mathbb{N}$.

As in Sect. 2.5, we again suppose that $g(x, y) = \begin{pmatrix} g_1(x, y) \\ g_2(x, y) \\ \vdots \\ g_n(x, y) \end{pmatrix}$, where each $g_j(x, y), 1 \leq j \leq n$, is a real valued function. Using the equicontinuity on \mathbb{R} of the family F, which is mentioned in Lemma 2.2, one can find a positive number $\tau < \Delta$, independent of the functions $x(t), \overline{x}(t) \in \mathcal{A}_x, y(t), \overline{y}(t) \in \mathcal{A}_y$, such that for any $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \tau$ the inequality

$$\left| \left(g_j(x(t_1), y(t_1)) - g_j(\overline{x}(t_1), y(t_1)) \right) - \left(g_j(x(t_2), y(t_2)) - g_j(\overline{x}(t_2), y(t_2)) \right) \right| < \frac{L_1 \varepsilon_0}{2n}$$

holds for all $1 \leq j \leq n$.

Suppose that the sequence $\{s_i\}$ denotes the midpoints of the intervals J_i, that is, $s_i = d_i + \Delta_i/2$ for each $i \in \mathbb{N}$. Let us define a sequence $\{\theta_i\}$ through the equation $\theta_i = s_i - \tau/2$.

Let us fix an arbitrary natural number i. In a similar way to the method specified in the proof of Lemma 2.3, one can show the existence of an integer $j_i = j_i(s_i), 1 \leq j_i \leq n$, such that

$$\left| g_{j_i}(x(s_i), y(s_i)) - g_{j_i}(\overline{x}(s_i), y(s_i)) \right| \geq \frac{L_1}{n} \|x(s_i) - \overline{x}(s_i)\| > \frac{L_1 \varepsilon_0}{n}. \quad (2.6.24)$$

On the other hand, making use of the inequality (2.6.23), it is easy to verify that

$$\left| g_{j_i}(x(s_i), y(s_i)) - g_{j_i}(\overline{x}(s_i), y(s_i)) \right| \leq \left| (g_{j_i}(x(t), y(t)) - g_{j_i}(\overline{x}(t), y(t))) \right| \leq \frac{L_1 \varepsilon_0}{2n},$$

for all $t \in [\theta_i, \theta_i + \tau]$. Therefore, by favor of (2.6.24), we obtain that the inequality
\[
\left| g_{j_i}(x(t), y(t)) - g_{j_i}(\bar{x}(t), y(t)) \right| > \left| g_{j_i}(x(s_i), y(s_i)) - g_{j_i}(\bar{x}(s_i), y(s_i)) \right| - \frac{L_1\varepsilon_0}{2n} \tag{2.6.25}
\]

is valid on the same interval.

Using the mean value theorem for integrals, it is possible to find real numbers \(s_1^i, s_2^i, \ldots, s_n^i \in [\theta_i, \theta_i + \tau]\) such that

\[
\left\| \int_{\theta_i}^{\theta_i+\tau} [g(x(s), y(s)) - g(\bar{x}(s), y(s))] ds \right\| \\
= \left\| \left(\int_{\theta_i}^{\theta_i+\tau} [g_1(x(s), y(s)) - g_1(\bar{x}(s), y(s))] ds \right) \\
+ \left(\int_{\theta_i}^{\theta_i+\tau} [g_2(x(s), y(s)) - g_2(\bar{x}(s), y(s))] ds \right) \\
+ \cdots \\
+ \left(\int_{\theta_i}^{\theta_i+\tau} [g_n(x(s), y(s)) - g_n(\bar{x}(s), y(s))] ds \right) \right\|
\]

\[
\geq \left| \left(\int_{\theta_i}^{\theta_i+\tau} [g_{j_i}(x(s_i^j), y(s_i^j)) - g_{j_i}(\bar{x}(s_i^j), y(s_i^j))] ds \right) \right|
\]

\[
> \tau \frac{L_1\varepsilon_0}{2n}.
\]

For \(t \in [\theta_i, \theta_i + \tau]\), the functions \(y(t) \in \mathcal{A}_y\) and \(\bar{y}(t) \in \mathcal{A}_y\) satisfy the relations

\[
y(t) = y(\theta_i) + \int_{\theta_i}^{t} A y(s) ds + \int_{\theta_i}^{t} g(x(s), y(s)) ds,
\]

and

\[
\bar{y}(t) = \bar{y}(\theta_i) + \int_{\theta_i}^{t} A \bar{y}(s) ds + \int_{\theta_i}^{t} g(\bar{x}(s), \bar{y}(s)) ds.
\]
respectively, and herewith the equation

\[y(t) - \overline{y}(t) = (y(\theta_i) - \overline{y}(\theta_i)) + \int_{\theta_i}^{t} A(y(s) - \overline{y}(s)) ds + \int_{\theta_i}^{t} [g(x(s), y(s)) - g(\overline{x}(s), y(s))] ds + \int_{\theta_i}^{t} [g(\overline{x}(s), y(s)) - g(\overline{x}(s), \overline{y}(s))] ds \]

is achieved. Taking \(t = \theta_i + \tau \) in the last equation, we attain the inequality

\[
\|y(\theta_i + \tau) - \overline{y}(\theta_i + \tau)\| \geq \left\|\int_{\theta_i}^{\theta_i+\tau} [g(x(s), y(s)) - g(\overline{x}(s), y(s))] ds\right\| - \|y(\theta_i) - \overline{y}(\theta_i)\| - \int_{\theta_i}^{\theta_i+\tau} (\|A\| + L_3) \|y(s) - \overline{y}(s)\| ds
\]

(2.6.26)

Now, assume that \(\max_{t \in [\theta_i, \theta_i+\tau]} \|y(t) - \overline{y}(t)\| \leq \frac{\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]} \). In this case, one arrives at a contradiction since, by means of the inequalities (2.6.25) and (2.6.26), we have

\[
\max_{t \in [\theta_i, \theta_i+\tau]} \|y(t) - \overline{y}(t)\| \geq \|y(\theta_i + \tau) - \overline{y}(\theta_i + \tau)\|
\]

\[
> \frac{\tau L_1 \varepsilon_0}{2n} - [1 + \tau(L_3 + \|A\|)] \max_{t \in [\theta_i, \theta_i+\tau]} \|y(t) - \overline{y}(t)\|
\]

\[
\geq \frac{\tau L_1 \varepsilon_0}{2n} - [1 + \tau(L_3 + \|A\|)] \frac{\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]}
\]

\[
= \frac{\tau L_1 \varepsilon_0}{2n(1 - \frac{2 + \tau(L_3 + \|A\|)}{2 + \tau(L_3 + \|A\|)})}
\]

\[
= \frac{\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]}.
\]

Therefore, it is true that \(\max_{t \in [\theta_i, \theta_i+\tau]} \|y(t) - \overline{y}(t)\| > \frac{\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]} \).

Suppose that the real valued function \(\|y(t) - \overline{y}(t)\| \) takes its maximum value for \(t \in [\theta_i, \theta_i+\tau] \) at a point \(\eta_i \). In other words, for some \(\eta_i \in [\theta_i, \theta_i+\tau] \), we have that

\[
\max_{t \in [\theta_i, \theta_i+\tau]} \|y(t) - \overline{y}(t)\| = \|y(\eta_i) - \overline{y}(\eta_i)\|.
\]

Making use of the integral equations
\begin{align*}
y(t) &= y(\eta_i) + \int_{\eta_i}^{t} Ay(s)ds + \int_{\eta_i}^{t} g(x(s), y(s))ds, \\
and \\
\bar{y}(t) &= \bar{y}(\eta_i) + \int_{\eta_i}^{t} A\bar{y}(s)ds + \int_{\eta_i}^{t} g(x(s), \bar{y}(s))ds,
\end{align*}
on the time interval \([\theta_i, \theta_i + \tau]\), one can obtain that
\begin{align*}
y(t) - \bar{y}(t) &= (y(\eta_i) - \bar{y}(\eta_i)) + \int_{\eta_i}^{t} A(y(s) - \bar{y}(s))ds \\
&\quad + \int_{\eta_i}^{t} [g(x(s), y(s)) - g(x(s), \bar{y}(s))]ds.
\end{align*}
Define the numbers
\[
\bar{\Delta} = \min \left\{ \frac{\tau}{2}, \frac{\tau L_1 \varepsilon_0}{8n(M \|A\| + M_0)[2 + \tau(L_3 + \|A\|)]} \right\}
\]
and
\[
\theta_i^1 = \begin{cases} \eta_i, & \text{if } \eta_i \leq \theta_i + \tau/2 \\ \eta_i - \tau^1, & \text{if } \eta_i > \theta_i + \tau/2. \end{cases}
\]
For each \(t \in [\theta_i^1, \theta_i^1 + \bar{\Delta}]\), we have that
\[
\begin{align*}
\|y(t) - \bar{y}(t)\| &\geq \|y(\eta_i) - \bar{y}(\eta_i)\| - \left| \int_{\eta_i}^{t} \|A\| \|y(s) - \bar{y}(s)\| ds \right| \\
&\quad - \left| \int_{\eta_i}^{t} \|g(x(s), y(s)) - g(x(s), \bar{y}(s))\| ds \right| \\
&\quad \geq \frac{\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]} - 2M \|A\| \tau^1 - 2M_0 \tau^1 \\
&\quad = \frac{2\tau L_1 \varepsilon_0}{2n[2 + \tau(L_3 + \|A\|)]} - 2\tau^1(M \|A\| + M_0) \\
&\quad \geq \frac{4\tau L_1 \varepsilon_0}{4n[2 + \tau(L_3 + \|A\|)]}.
\end{align*}
\]
The information mentioned above is true for an arbitrarily chosen natural number \(i\). Therefore, for each \(i \in \mathbb{N}\), the interval \(\bar{J}_i = [\theta_i^1, \theta_i^1 + \bar{\Delta}]\) is a subset of \([\theta_i, \theta_i + \tau]\), and hence of \(J_i\). Moreover, for any \(i \in \mathbb{N}\), we have \(\|y(t) - \bar{y}(t)\| > \varepsilon_1, t \in \bar{J}_i\), where \(\varepsilon_1 = \frac{\tau L_1 \varepsilon_0}{4n[2 + \tau(L_3 + \|A\|)]}\).
Consequently, according to Definition 2.7, the pair \((\phi_x(t)(t), \phi_{\bar{x}}(t)(t)) \in \mathcal{A} x \mathcal{A}\) is frequently \((\varepsilon_1, \bar{\Delta})\)-separated.

The proof of the lemma is finalized. \(\square\)
2.6 Extension of Li–Yorke Chaos

Now, we state and prove the main theorem of the present section. In the proof, we suppose that \(G_x \subset A_x \) denotes the set of periodic functions inside \(A_x \) and the set \(G_y \subset A_y \), defined through Eq. (2.5.22), denotes the set of periodic functions inside \(A_y \).

Theorem 2.3 If the set \(A_x \) is Li–Yorke chaotic, then the same is true for the set \(A_y \).

Proof It can be easily verified that for any natural number \(k \), \(x(t) \in G_x \) is a \(kT \)-periodic function if and only if \(\phi_x(t)(t) \in G_y \) is \(kT \)-periodic, where \(G_x \) and \(G_y \) denote the sets of all periodic functions inside \(A_x \) and \(A_y \), respectively. Therefore, the set \(A_y \) admits a \(kT \)-periodic function for any \(k \in \mathbb{N} \).

Next, suppose that the set \(C_x \) is a scrambled set inside \(A_x \) and define the set \(C_y = \{ \phi_x(t)(t) \mid x(t) \in C_x \} \). (2.6.27)

Condition \((A4)\) implies that there is a one-to-one correspondence between the sets \(C_x \) and \(C_y \). Since the scrambled set \(C_x \) is uncountable, it is clear that the set \(C_y \) is also uncountable. Moreover, using the same condition one can show that no periodic functions exist inside \(C_y \), since no such functions take place inside the set \(C_x \). That is, \(C_y \cap G_y = \emptyset \).

Since each couple of functions inside \(C_x \times C_x \) is proximal, Lemma 2.6 implies the same feature for each couple of functions inside \(C_y \times C_y \).

Similarly, Lemma 2.7 implies that if each couple of functions \((x(t), \bar{x}(t)) \in C_x \times C_x \) \((C_x \times G_x)\) is frequently \((\varepsilon_0, \Delta)\)-separated for some positive numbers \(\varepsilon_0 \) and \(\Delta \), then each couple of functions \((y(t), \bar{y}(t)) \in C_y \times C_y \) \((C_y \times G_y)\) is frequently \((\varepsilon_1, \bar{\Delta})\)-separated for some positive numbers \(\varepsilon_1 \) and \(\bar{\Delta} \). Consequently, the set \(C_y \) is a scrambled set inside \(A_y \), and according to Definition 2.10, \(A_y \) is Li–Yorke chaotic.

The proof of the theorem is accomplished. □

An immediate corollary of Theorem 2.3 is the following:

Corollary 2.5 If the set \(A_x \) is Li–Yorke chaotic, then the set \(A \) is chaotic in the same way.

2.7 Morphogenesis of Chaos

Two different mechanisms of chaos extension (morphogenesis) through applying replication are considered in this chapter. The first one is illustrated schematically in Fig. 2.4. The figure represents consecutively connected systems as boxes and the blue arrows symbolize unidirectional couplings between two systems. In the first coupling, we take into account a generator system, the leftmost box in the figure, which is connected with a second system considered as a replicator in the couple. In the next coupling, the second system is considered as a generator with respect to the third one. That is, it changes its role in the extension process. In the third coupling,
the third system is considered as a generator and the forth one as a replicator. In summary, the mechanism proceeds as follows. We take into account consecutive unidirectionally coupled systems such that the initial one is a generator and at each next coupling the role of the previously chaotified replicator changes and we start to use it as a generator. As a result of the mechanism all individual subsystems are chaotic as well as the system which consists of all subsystems. Moreover, the type of the chaos is saved under this procedure.

In Fig. 2.5 we show another mechanism of chaos extension. Here, the generator is surrounded by three replicators and the blue arrows symbolize, again, unidirectional couplings between two systems. Distinctively from the former mechanism, the replicators do not change their role with respect to each other according to the special topology of connection. The generator is coupled with all other replicators such that it is rather a core than a beginning element. The result of the mechanism is similar to the former such that all replicators as well as the system consisting of all subsystems become chaotic, saving the chaos type of the generator.

We call the two ways as the chain and the core mechanisms, respectively, and the system which unites the generator and several replicators, of type (2.1.2), in either extension mechanism as the result-system. Theoretically, we do not discuss constraints on the dimension of the result-system, but under certain conditions it seems that the dimension is not restricted for both mechanisms. However, this is definitely true for the core mechanism even with infinite dimensions. We will discuss and simulate the chain mechanism in the chapter, mainly, since the core mechanism can be discussed very similarly. One can invent other mechanisms, for example, by considering “composition” of the two mechanisms proposed presently. As an example, one can consider the network pictured in Fig. 1.2.

Next, to exemplify the chaos extension procedure, according to the chain mechanism shown in Fig. 2.4 we set up the following 8-dimensional result-system
We note that system (2.7.28) consists of four subsystems with the coordinates
\((x_1, x_2), (x_3, x_4), (x_5, x_6),\) and \((x_7, x_8)\) such that the subsystem \((x_1, x_2)\) is exactly the generator used in system (2.1.5) + (2.1.6), while the subsystem \((x_3, x_4)\) is the replicator of (2.1.5) + (2.1.6).

According to the theoretical results of the present chapter, system (2.7.28) possesses a chaotic attractor in the 8-dimensional phase space. By marking the trajectory of this system with the initial data
\(x_1(0) = 2,\) \(x_2(0) = 3,\) \(x_3(0) = x_5(0) = x_7(0) = -1,\) \(x_4(0) = x_6(0) = x_8(0) = 1\) stroboscopically at times that are integer multiples of \(2\pi,\) we obtain the Poincaré section inside the 8-dimensional space. In Fig. 2.6, which informs us about morphogenesis, the 3-dimensional projections of the whole Poincaré section on the \(x_2 - x_4 - x_6\) and \(x_3 - x_5 - x_7\) spaces are shown. One can see in Fig. 2.6a, b the additional foldings which are not possible to observe in the classical strange attractor shown in Fig. 2.2a. In the same time, the shape of the original attractor is seen in the resulting chaos. The illustrations in (a) and (b) repeat the structure of the attractor of the generator and the similarity between these pictures is a manifestation of the morphogenesis of chaos.

\[
\begin{align*}
x_1^i &= x_2 \\
x_2^i &= -0.05x_2 - x_1^3 + 7.5 \cos t \\
x_3^i &= x_4 + x_1 \\
x_4^i &= -3x_3 - 2x_4 - 0.008x_3^3 + x_2 \\
x_5^i &= x_6 + x_3 \\
x_6^i &= -3x_5 - 2.1x_6 - 0.007x_5^3 + x_4 \\
x_7^i &= x_8 + x_5 \\
x_8^i &= -3.1x_7 - 2.2x_8 - 0.006x_7^3 + x_6. \\
\end{align*}
\]
structure, but more beautiful and impressive than its projections. From this point of view, we are not surprised since these facts have been proved theoretically.

Next, we shall handle the problem that whether the chaos extension procedure works for all existing systems in the mechanisms presented above, from the theoretical point of view. Since the core mechanism does not need any additional theoretical discussions, we will consider the chain mechanism.

In addition to the system (2.1.1) + (2.1.2), we take into account the system

\[z' = Bz + h(y(t), z), \]

(2.7.29)

where \(h : \mathbb{R}^n \times \mathbb{R}^l \rightarrow \mathbb{R}^l \) is a continuous function in all of its arguments, the constant \(l \times l \) real-valued matrix \(B \) has real parts of eigenvalues all negative and \(y(t) \) is a solution system (2.1.2).

It is easy to verify the existence of positive numbers \(\tilde{N} \) and \(\tilde{\omega} \) such that

\[\|e^{Bt}\| \leq \tilde{N}e^{-\tilde{\omega}t}, \]

for all \(t \geq 0 \).

In our next theoretical discussions, the system (2.7.29) will serve as the third system in the chain mechanism presented by Fig. 2.4, and we need the following assumptions which are counterparts of the conditions (A4)–(A7) presented in Sect. 2.2.

(A8) There exists a positive number \(\tilde{L}_1 \) such that

\[\|h(y_1, z) - h(y_2, z)\| \geq \tilde{L}_1 \|y_1 - y_2\|, \]

for all \(y_1, y_2 \in \mathbb{R}^n, z \in \mathbb{R}^l \);

(A9) There exist positive numbers \(\tilde{L}_2 \) and \(\tilde{L}_3 \) such that

\[\|h(y_1, z) - h(y_2, z)\| \leq \tilde{L}_2 \|y_1 - y_2\|, \]

for all \(y_1, y_2 \in \mathbb{R}^n, z \in \mathbb{R}^l \), and

\[\|h(y, z_1) - h(y, z_2)\| \leq \tilde{L}_3 \|z_1 - z_2\|, \]

for all \(y \in \mathbb{R}^n, z_1, z_2 \in \mathbb{R}^l \);

(A10) There exists a positive number \(K_0 < \infty \) such that

\[\sup_{y \in \mathbb{R}^n, z \in \mathbb{R}^l} \|h(y, z)\| \leq K_0; \]

(A11) \(\tilde{N}\tilde{L}_3 - \tilde{\omega} < 0 \).

Likewise the definition for the set of functions \(\mathcal{A}_y \), given by (2.2.10), let us denote by \(\mathcal{A}_z \) the set of all bounded on \(\mathbb{R} \) solutions of system \(z' = Az + g(y(t), z) \), for any \(y(t) \in \mathcal{A}_y \).

In a similar way to Lemma 2.1, one can show that the set \(\mathcal{U}_z \) which consists of the solutions of system \(z' = Az + g(y(t), z) \) for some \(y(t) \in \mathcal{U}_y \) is a basin of \(\mathcal{A}_z \).
Furthermore, a similar result of Theorem 2.1 introduced in Sect. 2.4, hold also for the set \mathcal{A}_z.

We state in the next theorem that similar results of the Theorems 2.2 and 2.3 presented in Sects. 2.5 and 2.6, respectively, hold also for the set \mathcal{A}_z.

We note that, in the case of the presence of arbitrary finite number of systems, which obey conditions that are counterparts of (A4)–(A7), one can prove that a similar result of the next theorem holds for the chain mechanism.

Theorem 2.4 If the set \mathcal{A}_x is Devaney chaotic or Li–Yorke chaotic, then the set \mathcal{A}_z is chaotic in the same way as both \mathcal{A}_x and \mathcal{A}_y.

Proof In the proof, we will show that for each $z(t) \in \mathcal{A}_z$ and arbitrary $\delta > 0$, there exist $\tau(t) \in \mathcal{A}_z$ and $t_0 \in \mathbb{R}$ such that $\|z(t_0) - \tau(t_0)\| < \delta$, which is needed to show sensitivity of \mathcal{A}_z. The remaining parts of the proof can be performed in a similar way to the proofs presented in Sects. 2.5 and 2.6, and therefore are omitted.

Suppose that the set \mathcal{A}_x is sensitive. Fix an arbitrary $\delta > 0$ and let $z(t) \in \mathcal{A}_z$ be a given solution of system (2.7.29). In this case, there exists $y(t) = \phi_{x(t)}(t) \in \mathcal{A}_y$, where $x(t) \in \mathcal{A}_x$, such that $z(t)$ is the unique bounded on \mathbb{R} solution of the system $z' = Bz + h(y(t), z)$.

Let us choose a sufficiently small positive number $\varepsilon = \varepsilon(\delta)$ which satisfies the inequality

$$
\left(1 + \frac{NL_2}{\omega - NL_3}\right)\left(1 + \frac{NL_2}{\omega - NL_3}\right)\varepsilon < \delta
$$

and denote $\varepsilon_1 = \left(1 + \frac{NL_2}{\omega - NL_3}\right)\varepsilon$. Now, take $R = R(\varepsilon) < 0$ sufficiently large in absolute value such that both of the inequalities $\frac{2M_0N}{\omega}e^{-(NL_3-\omega)R/2} \leq \varepsilon$ and $\frac{2M_0N}{\omega}e^{-(NL_3-\omega)R/2} \leq \varepsilon_1$ are valid, and let $\delta_1 = \delta_1(\varepsilon, R) = \varepsilon e^{L_0R}$. Since the set \mathcal{A}_x is sensitive, one can find $\tau(t) \in \mathcal{A}_x$ and $t_0 \in \mathbb{R}$ such that the inequality $\|x(t_0) - \tau(t_0)\| < \delta_1$ holds.

As in the case of the proof of Lemma 2.3, for $t \in [t_0 + R, t_0]$, one can verify that $\|x(t) - \tau(t)\| < \varepsilon$, and

$$
\|y(t) - \tau(t)\| \leq \frac{NL_2\varepsilon}{\omega - NL_3} + \frac{2M_0N}{\omega}e^{(NL_3-\omega)(t-t_0-R)}.
$$

According to the last inequality, we have $\|y(t) - \tau(t)\| \leq \varepsilon_1$, for $t \in [t_0 + R/2, t_0]$.

Suppose that $\tau(t)$ is the unique bounded on \mathbb{R} solution of the system $z' = Bz + h(\bar{y}(t), z)$. One can see that the relations

$$
z(t) = \int_{-\infty}^{t} e^{B(t-s)}h(y(s), z(s))ds
$$
and

\[z(t) = \int_{-\infty}^{t} e^{B(t-s)} h(\bar{y}(s), \bar{z}(s)) \, ds, \]

are valid. Using these equations, it can be verified that

\[\|z(t) - \bar{z}(t)\| \leq \int_{t_0 + \frac{R}{2}}^{t} \bar{N} e^{-\bar{\omega}(t-s)} \|h(y(s), z(s)) - h(y(s), \bar{z}(s))\| \, ds \]

\[+ \int_{t_0 + \frac{R}{2}}^{t} \bar{N} e^{-\bar{\omega}(t-s)} \|h(y(s), \bar{z}(s)) - h(\bar{y}(s), \bar{z}(s))\| \, ds \]

\[+ \int_{-\infty}^{t_0 + \frac{R}{2}} \bar{N} e^{-\bar{\omega}(t-s)} \|h(y(s), z(s)) - h(\bar{y}(s), \bar{z}(s))\| \, ds. \]

Since \(\|y(t) - \bar{y}(t)\| < \varepsilon_1 \) for \(t \in [t_0 + R/2, t_0] \), one has

\[\|z(t) - \bar{z}(t)\| \leq \bar{N} \bar{L}_3 \int_{t_0 + \frac{R}{2}}^{t} e^{-\bar{\omega}(t-s)} \|z(s) - \bar{z}(s)\| \, ds \]

\[+ \bar{N} \bar{L}_2 \varepsilon_1 \int_{t_0 + \frac{R}{2}}^{t} e^{-\bar{\omega}(t-s)} \, ds + 2 \bar{M}_0 \bar{N} \int_{-\infty}^{t_0 + \frac{R}{2}} e^{-\bar{\omega}(t-s)} \, ds \]

\[\leq \bar{N} \bar{L}_3 \int_{t_0 + \frac{R}{2}}^{t} e^{-\bar{\omega}(t-s)} \|z(s) - \bar{z}(s)\| \, ds \]

\[+ \frac{\bar{N} \bar{L}_2 \varepsilon_1}{\bar{\omega}} e^{-\bar{\omega}t} (e^{\bar{\omega}t} - e^{\bar{\omega}(t_0 + R/2)}) + \frac{2 \bar{M}_0 \bar{N}}{\bar{\omega}} e^{-\bar{\omega}(t-t_0 - R/2)}. \]

Now, let us introduce the functions \(u(t) = e^{\bar{\omega}t} \|z(t) - \bar{z}(t)\| \), \(k(t) = \frac{\bar{N} \bar{L}_2 \varepsilon_1}{\bar{\omega}} e^{\bar{\omega}t} \),

and \(v(t) = c + k(t) \) where \(c = \left(\frac{2 \bar{M}_0 \bar{N}}{\bar{\omega}} - \frac{\bar{N} \bar{L}_2 \varepsilon_1}{\bar{\omega}} \right) e^{\bar{\omega}(t_0 + R/2)}. \)

These definitions imply that \(u(t) \leq v(t) + \int_{t_0 + \frac{R}{2}}^{t} \bar{N} \bar{L}_3 u(s) \, ds \) and applying Lemma 2.2 [20] leads to

\[u(t) \leq v(t) + \bar{N} \bar{L}_3 \int_{t_0 + \frac{R}{2}}^{t} e^{\bar{N} \bar{L}_3 (t-s)} h(s) \, ds. \]

Therefore, for \(t \in [t_0 + R/2, t_0] \) we have
2.7 Morphogenesis of Chaos

\[u(t) \leq c + k(t) + c \left(e^{\tilde{N}_L (t-t_0-R/2)} - 1 \right) + \frac{N^2 \tilde{L}_2 \tilde{L}_3 \tilde{\epsilon}_1}{\tilde{\omega}} e^{\tilde{N}_L t} \int_{t_0+\frac{R}{2}}^{t} e^{(\tilde{\omega}-\tilde{N}_L)s} ds \]

\[= \frac{\tilde{N}_L \tilde{L}_2 \tilde{\epsilon}_1}{\tilde{\omega}} e^{\tilde{\omega}t} + \left(\frac{2 \tilde{M}_0 N}{\tilde{\omega}} - \frac{\tilde{N}_L \tilde{L}_2 \tilde{\epsilon}_1}{\tilde{\omega}} \right) e^{\tilde{\omega}T} e^{\tilde{N}_L (t-t_0-R/2)} + \frac{\tilde{N}_L^2 \tilde{L}_2 \tilde{\epsilon}_1}{\tilde{\omega}(\tilde{\omega} - \tilde{N}_L)} e^{\tilde{\omega}t} \left[1 - e^{(\tilde{N}_L - \tilde{\omega})(t-t_0-R/2)} \right], \]

and hence

\[\| z(t) - \bar{z}(t) \| \leq \frac{\tilde{N}_L \tilde{L}_2 \tilde{\epsilon}_1}{\tilde{\omega} - \tilde{N}_L} \left[1 - e^{(\tilde{N}_L - \tilde{\omega})(t-t_0-R/2)} \right] + \frac{2 \tilde{M}_0 N}{\tilde{\omega}} e^{(\tilde{N}_L - \tilde{\omega})(t-t_0-R/2)}. \]

Consequently, the inequality

\[\| z(t_0) - \bar{z}(t_0) \| \leq \frac{\tilde{N}_L \tilde{L}_2 \tilde{\epsilon}_1}{\tilde{\omega} - \tilde{N}_L} + \frac{2 \tilde{M}_0 N}{\tilde{\omega}} e^{(\tilde{\omega} - \tilde{N}_L)R/2} \]

\[< \left(1 + \frac{\tilde{N}_L \tilde{L}_2}{\tilde{\omega} - \tilde{N}_L} \right) \tilde{\epsilon}_1 < \delta \]

is valid.

The theorem is proved. □

2.8 Period-Doubling Cascade

We start this section by describing the chaos through period-doubling cascade [22–24] for the set of functions \(\mathcal{A}_x \), and deal with its replication by the set of functions \(\mathcal{A}_x \), which is defined by Eq. (2.2.10).

Suppose that there exists a function \(G : \mathbb{R} \times \mathbb{R}^m \times \mathbb{R} \rightarrow \mathbb{R}^m \) which is continuous in all of its arguments such that \(F(t, x) = G(t, x, \mu_\infty) \) for some finite number \(\mu_\infty \), which will be explained below.

To discuss chaos through period-doubling cascade, let us consider the system

\[x' = G(t, x, \mu), \quad (2.8.30) \]

where \(\mu \) is a parameter.

We say that the set \(\mathcal{A}_x \) is chaotic through period-doubling cascade if there exist a natural number \(k \) and a sequence of period-doubling bifurcation values \(\{ \mu_m \} \), \(\mu_m \rightarrow \mu_\infty \) as \(m \rightarrow \infty \), such that for each \(m \in \mathbb{N} \) as the parameter \(\mu \) increases (or decreases) through \(\mu_m \), system (2.8.30) undergoes a period-doubling bifurcation and a periodic solution with period \(k 2^m T \) appears. As a consequence, at \(\mu = \mu_\infty \), there
exist infinitely many unstable periodic solutions of system (2.8.30), and hence of system (2.1.1), all lying in a bounded region. In this case, the set A_x admits periodic functions of periods $kT, 2kT, 4kT, 8kT, \ldots$.

Now, making use of the Eq. (2.2.9), one can show that for any natural number p, if $x(t) \in A_x$ is a pT-periodic function then $\phi_x(t) \in A_y$ is also pT-periodic. Moreover, condition (A4) implies that the converse is also true. Consequently, if the set A_x admits periodic functions of periods $kT, 2kT, 4kT, \ldots$, then the same is valid for A_y, with no additional periodic functions of any other period. Furthermore, the technique indicated in the proof of Lemma 2.3 can be used to show that these periodic solutions are all unstable and this provides us an opportunity to state the following theorem.

Theorem 2.5 If the set A_x is chaotic through period-doubling cascade, then the same is true for A_y.

The following corollary of Theorem 2.5 states that the result-system (2.1.1) + (2.1.2) is chaotic through the period-doubling cascade, provided the system (2.1.1) is.

Corollary 2.6 If the set A_x is chaotic through period-doubling cascade, then the same is true for A.

Our theoretical results show that the replicator system (2.1.2), likewise the generator counterpart, undergoes period-doubling bifurcations as the parameter μ increases or decreases through the values $\mu_m, m \in \mathbb{N}$. That is, the sequence $\{\mu_m\}$ of bifurcation parameters is exactly the same for both generator and replicator systems. In this case, if the generator system obeys the Feigenbaum universality [5, 25–27] then one can conclude that the same is true also for the replicator. In other words, when

$$\lim_{m \to \infty} \frac{\mu_m - \mu_{m+1}}{\mu_{m+1} - \mu_{m+2}}$$

is evaluated, the universal constant known as the Feigenbaum number $4.6692016\ldots$ is achieved and this universal number is the same for both generator and replicator.

It is worth saying that the results about replication of period-doubling cascade as well as the Feigenbaum’s universal behavior, which can be perceived as another aspect of morphogenesis of chaos, are true also for chaos extension mechanisms shown in Figs. 2.4 and 2.5. In our next example, using the chain mechanism, we will illustrate through simulations the morphogenesis of period-doubling cascade.

In paper [28], it is indicated that the Duffing’s equation

$$x'' + 0.3x' + x^3 = \mu \cos t \quad (2.8.31)$$

admits the chaos through period-doubling cascade at the parameter value $\mu = \mu_\infty \equiv 40$. Defining the new variables $x_1 = x$ and $x_2 = x'$, Eq. (2.8.31) can be rewritten as a system in the following form:

$$x_1' = x_2$$

$$x_2' = -0.3x_2 - x_1^3 + \mu \cos t. \quad (2.8.32)$$
Making use of system (2.8.32) as the generator, let us constitute the following 8-dimensional result-system

\[
\begin{align*}
 x_1' &= x_2 \\
 x_2' &= -0.3x_2 - x_1^3 + \mu \cos t \\
 x_3' &= 2x_3 - x_4 + 0.4 \tan ((x_1 + x_3)/10) \\
 x_4' &= 17x_3 - 6x_4 + x_2 \\
 x_5' &= -2x_5 + 0.5 \sin x_6 - 4x_4 \\
 x_6' &= -x_5 - 4x_6 - \tan (x_3/2) \\
 x_7' &= 2x_7 + 5x_8 - 0.0003(x_7 - x_8)^3 - 1.5x_6 \\
 x_8' &= -5x_7 - 8x_8 + 4x_5
\end{align*}
\]

(2.8.33)

System (2.8.33) is designed according to the chain mechanism indicated in Fig. 2.4. In the coupling between the subsystems with coordinates \((x_1, x_2)\) and \((x_3, x_4)\) the former is the generator and the latter is the replicator. In the second coupling between the subsystems with coordinates \((x_3, x_4)\) and \((x_5, x_6)\), this time the former is used as the generator although it was the replicator in the previous coupling. The final coupling between the subsystems with coordinates \((x_5, x_6)\) and \((x_7, x_8)\) is constructed in a similar way. In this exemplification we will refer to subsystems with coordinates \((x_1, x_2)\), \((x_3, x_4)\), \((x_5, x_6)\) and \((x_7, x_8)\) as the first, second, third and the fourth subsystems, respectively.

According to our theoretical discussions, the result-system (2.8.33) with the parameter value \(\mu = \mu_\infty \equiv 40\) admits a chaotic attractor in the 8-dimensional phase space, which is obtained through period-doubling cascade. For the parameter value \(\mu\) between 30 and 40, the bifurcation diagrams corresponding to the \(x_2, x_4, x_6\) and \(x_8\) coordinates of system (2.8.33) are illustrated in Fig. 2.7. The picture shown in Fig. 2.7a is the bifurcation diagram of the system (2.8.32), while the pictures presented in Fig. 2.7b–d correspond to the second, third and the fourth subsystems, respectively. For the parameter values where stable periodic solutions exist, the one-to-one correspondence between the periodic solutions of the subsystems is observable in the figure. Moreover, it is seen in Fig. 2.7b–d that, likewise the first subsystem, all other subsystems undergo period-doubling bifurcations at the same parameter values such that for \(\mu = \mu_\infty\) all of them are chaotic. One should recognize that the similarities between the presented bifurcation diagrams indicate morphogenesis of period-doubling cascade.

In Fig. 2.8a–d, we illustrate the 2-dimensional projections of the trajectory of system (2.8.33), with the initial data \(x_1(0) = 2.16, x_2(0) = -9.28, x_3(0) = -0.21, x_4(0) = -2.03, x_5(0) = 3.36, x_6(0) = -0.52, x_7(0) = 3.07, x_8(0) = -0.32\), on the planes \(x_1 - x_2, x_3 - x_4, x_5 - x_6,\) and \(x_7 - x_8\), respectively. The picture in Fig. 2.8a shows in fact the attractor of the prior chaos produced by the generator system (2.8.32) and similarly the illustrations in Fig. 2.8b–d correspond to the chaotic attractors of the second, third and the fourth subsystems, respectively. The resemblance between the shapes of the attractors of the subsystems reflect the morphogenesis of chaos in the result-system (2.8.33).
Fig. 2.7 The bifurcation diagrams of system (2.8.33) according to coordinates. \textbf{a} The bifurcation diagram corresponding to x_2-coordinate. \textbf{b} The bifurcation diagram corresponding to x_4-coordinate. \textbf{c} The bifurcation diagram corresponding to x_6-coordinate. \textbf{d} The bifurcation diagram corresponding to x_8-coordinate. The picture in (a) is the bifurcation diagram of the generator system (2.8.32) and the pictures shown in (b), (c) and (d) correspond to the second, third and fourth replicator systems, respectively. It is observable that all replicators, likewise the generator, undergo period-doubling bifurcations at the same values of the parameter and all of them are chaotic for $\mu = \mu_\infty = 40$. The one-to-one correspondence between the stable periodic solutions of the generator and replicators are also seen in the figure. The resemblances between the bifurcation diagrams corresponding to the coordinates x_2, x_4, x_6, and x_8 reveal morphogenesis of chaos.

To obtain a better impression about the chaotic attractor of system (2.8.33), in Fig. 2.9 we demonstrate the 3-dimensional projections of the trajectory with the same initial data as above, on the $x_3 - x_5 - x_7$ and $x_4 - x_6 - x_8$ spaces. Although we are restricted to make illustrations at most in 3-dimensional spaces and not able to provide a picture of the whole chaotic attractor, the results shown both in Figs. 2.8 and 2.9 give us an idea about the spectacular chaotic attractor of system (2.8.33).

We note that system (2.8.33) exhibits a symmetry under the transformation which maps x_i to $-x_i$, $i = 1, 2, \ldots, 8$ and t to $t + \pi$, and the presented attractors are symmetric around the origin due to the symmetry of the result-system (2.8.33) under this transformation.

Now, let us show that the first replicator system which is included inside (2.8.33) satisfies the condition (A7).

When the system
\begin{align*}
x_3' &= 2x_3 - x_4 + 0.4 \tan \left((x_1 + x_3)/10 \right) \\
x_4' &= 17x_3 - 6x_4 + x_2 \quad \text{(2.8.34)}
\end{align*}
2.8 Period-Doubling Cascade

Fig. 2.8 2-dimensional projections of the chaotic attractor of the result-system (2.8.33). a) Projection on the $x_1 - x_2$ plane. b) Projection on the $x_3 - x_4$ plane. c) Projection on the $x_5 - x_6$ plane. d) Projection on the $x_7 - x_8$ plane. The picture in (a) shows the attractor of the prior chaos produced by the generator system (2.8.32) and in (b)–(d) the chaotic attractors of the remaining subsystems are observable. The illustrations in (b)–(d) repeated the structure of the attractor shown in (a), and these pictures are indicators of the chaos extension.

Fig. 2.9 3-dimensional projections of the chaotic attractor of the result-system (2.8.33). a) Projection on the $x_3 - x_5 - x_7$ space. b) Projection on the $x_4 - x_6 - x_8$ space. The illustrations presented in (a) and (b) give information about the impressive chaotic attractor in the 8-dimensional space.
is considered in the form of system (2.1.2), one can see that the matrix A can be written as $A = \begin{pmatrix} 2 & -1 \\ 17 & -6 \end{pmatrix}$, which admits the complex conjugate eigenvalues $-2 \mp i$.

The real Jordan form of the matrix A is given by $J = \begin{pmatrix} -2 & -1 \\ 1 & -2 \end{pmatrix}$ and the identity $P^{-1}AP = J$ is satisfied where $P = \begin{pmatrix} 0 & 1 \\ -1 & 4 \end{pmatrix}$. Evaluating the exponential matrix e^{At} we obtain that

$$e^{At} = e^{-2t} P \begin{pmatrix} \cos t - \sin t \\ \sin t \cos t \end{pmatrix} P^{-1}. \quad (2.8.35)$$

Taking $N = \|P\| \|P^{-1}\| < 18$ and $\omega = 2$, one can see that the inequality $\|e^{At}\| \leq Ne^{-\omega t}$ holds for all $t \geq 0$. The function $g : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined as

$$g(x_1, x_2, x_3, x_4) = \left(0.4 \tan \left(\frac{x_1 + x_3}{10} \right), x_2 \right)$$

satisfies the conditions (A4) and (A5) with constants $L_1 = \sqrt{2}/50$, $L_2 = \sqrt{2}$ and $L_3 = 0.08$ since the chaotic attractor of system (2.8.33) satisfies the inequalities $|x_1| \leq 6$, $|x_3| \leq 3/2$, and consequently $\left| \frac{x_1 + x_3}{10} \right| \leq 3/4$. Therefore, the condition (A7) is satisfied.

In a similar way, for the second replicator system, making use of $|x_3| \leq 3/2$ once again, one can show that the function $h : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined as

$$h(x_3, x_4, x_5, x_6) = \left(0.5 \sin x_6 - 4x_4, -\tan \left(\frac{x_3}{2} \right) \right)$$

satisfies the counterparts of the conditions (A4) and (A5) with constants $L_1 = \sqrt{2}/4$, $L_2 = 4\sqrt{2}$ and $L_3 = 1/2$.

Now, we shall focus on the third replicator system

$$\begin{array}{l}
x_7' = 2x_7 + 5x_8 - 0.00004(x_7 - x_8)^3 - \frac{3}{2}x_6 \\
x_8' = -5x_7 - 8x_8 + 4x_5.
\end{array} \quad (2.8.36)$$

The matrix of coefficients of the system (2.8.36) with the assumed coefficients is

$$A = \begin{pmatrix} 2 & 5 \\ -5 & -8 \end{pmatrix}.$$
It can be easily seen that -3 is an eigenvalue of the matrix A with multiplicity 2. The real Jordan form of the matrix A is $J = \begin{pmatrix} -3 & 1 \\ 0 & -3 \end{pmatrix}$ and the identity $J = P^{-1}AP$ is satisfied where $P = \begin{pmatrix} 1 & 0 \\ -1 & 1/5 \end{pmatrix}$. Evaluating the exponential matrix e^{At} we have

$$e^{At} = e^{-3t} P \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} P^{-1}. \quad (2.8.37)$$

If we denote by I the 2×2 identity matrix, then using Eq. (2.8.37), one can conclude for $t \geq 0$ that

$$\left\| e^{At} \right\| \leq e^{-3t} \left\| P \right\| \left\| P^{-1} \right\| \left\| I + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right\|$$

$$\leq e^{-3t} \left\| P \right\| \left\| P^{-1} \right\| (1 + t)$$

$$= e^{-2t} \left\| P \right\| \left\| P^{-1} \right\| \frac{1 + t}{e^t}$$

$$\leq e^{-2t} \left\| P \right\| \left\| P^{-1} \right\|$$

since $1 + t \leq e^t$ for all $t \geq 0$.

Thus, taking $N = \left\| P \right\| \left\| P^{-1} \right\| < 10.2$ and $\omega = 2$, one can see that the inequality $\left\| e^{At} \right\| \leq N e^{-\omega t}$ holds for all $t \geq 0$. Furthermore, the function $k : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by the formula

$$k(x_5, x_6, x_7, x_8) = \begin{pmatrix} 0.0003(x_7 - x_8)^3 - \frac{3}{2}x_6, 4x_5 \end{pmatrix}$$

satisfies the conditions (A4) and (A5) with constants $L_1 = 3\sqrt{2}/4$, $L_2 = 4\sqrt{2}$ and $L_3 = 0.19$, since the chaotic attractor of system (2.8.36) satisfies the inequalities $|x_7| \leq 8$, $|x_8| \leq 4$. Therefore, $NL_3 - \omega < 0$ and condition (A7) is satisfied.

Remark 2.3 We have proved that the replicator system (2.1.2) exhibits chaos in the sense of Devaney, Li--Yorke, and the one obtained through period-doubling cascade, provided that the generator system (2.1.1) or (2.2.8) exhibits the same types of chaos. Since Lemma 2.1 implies the presence of the criterion (1.1.9) for the unidirectionally coupled system (2.2.8) + (2.1.2), in which an autonomous generator is used, we can say that generalized synchronization takes place in the dynamics of system (2.2.8) + (2.1.2).

The next section is devoted to the results about controlling the replicated chaos.
2.9 Control by Replication

In the previous sections, we have theoretically proved replication of chaos for specific types and controlling the extended chaos is another interesting problem. The next theorem and its corollary indicate a method to control the chaos of the replicator system (2.1.2) and the result-system (2.1.1)+(2.1.2), respectively, and reveal that controlling the chaos of system (2.1.1) is sufficient for this.

Theorem 2.6 Assume that for arbitrary \(\varepsilon > 0 \), a periodic solution \(x_p(t) \in \mathcal{A}_x \) is stabilized such that for any solution \(x(t) \) of system (2.1.1) there exist real numbers \(a \) and \(E > 0 \) such that the inequality \(\| x(t) - x_p(t) \| < \varepsilon \) holds for \(t \in [a, a + E] \).

Then, the periodic solution \(\phi_{x_p(t)}(t) \in \mathcal{A}_y \) is stabilized such that for any solution \(y(t) \) of system (2.1.2) there exists a number \(b \geq a \) such that the inequality \(\| y(t) - \phi_{x_p(t)}(t) \| < \left(1 + \frac{NL_2}{\omega} - NL_3\right)e \) holds for \(t \in [b, a + E] \), provided that the number \(E \) is sufficiently large.

Proof Fix an arbitrary solution \(y(t) \) of system \(y' = Ay + g(x(t), y) \) for some solution \(x(t) \) of system (2.1.1). According to our assumption, there exist numbers \(a \) and \(E > 0 \) such that the inequality \(\| x(t) - x_p(t) \| < \varepsilon \) holds for \(t \in [a, a + E] \). Let us denote \(y_p(t) = \phi_{x_p(t)}(t) \in \mathcal{A}_y \). It is clear that the function \(y_p(t) \) is periodic with the same period as \(x_p(t) \). Since \(y(t) \) and \(y_p(t) \) satisfy the integral equations

\[
y(t) = e^{A(t-a)}y(a) + \int_a^t e^{A(t-s)}g(x(s), y(s))ds,
\]

and

\[
y_p(t) = e^{A(t-a)}y_p(a) + \int_a^t e^{A(t-s)}g(x_p(s), y_p(s))ds,
\]

respectively, one has

\[
\begin{align*}
y(t) - y_p(t) &= e^{A(t-a)}(y(a) - y_p(a)) \\
&+ \int_a^t e^{A(t-s)}\left[g(x(s), y(s)) - g(x(s), y_p(s))\right]ds \\
&+ \int_a^t e^{A(t-s)}\left[g(x(s), y_p(s)) - g(x_p(s), y_p(s))\right]ds.
\end{align*}
\]

By the help of the last equation, we have

\[
\begin{align*}
\| y(t) - y_p(t) \| &\leq Ne^{-\omega(t-a)}\| y(a) - y_p(a) \| + \frac{NL_2e^{-\omega t}}{\omega} \left(e^{\omega t} - e^{\omega a}\right) \\
&+ NL_3 \int_a^t e^{-\omega(t-s)} \| y(s) - y_p(s) \| ds.
\end{align*}
\]
Let $u : [a, a + E] \rightarrow [0, \infty)$ be a function defined as $u(t) = e^{\omega t} \|y(t) - y_p(t)\|$. In this case, we reach the inequality

$$u(t) \leq Ne^{\omega a} \|y(a) - y_p(a)\| + \frac{NL_2 \varepsilon}{\omega} (e^{\omega t} - e^{\omega a}) + NL_3 \int_a^t u(s) ds.$$

Implementation of Lemma 2.2 [20] to the last inequality, where $t \in [a, a + E]$, provides us

$$u(t) \leq \frac{NL_2 \varepsilon}{\omega} e^{\omega a} + N \|y(a) - y_p(a)\| e^{NL_3(t-a)}$$

and consequently,

$$\|y(t) - y_p(t)\| \leq \frac{NL_2 \varepsilon}{\omega} + N \|y(a) - y_p(a)\| e^{(NL_3-\omega)(t-a)}$$

$$- \frac{NL_2 \varepsilon}{\omega} e^{(NL_3-\omega)(t-a)} + \frac{NL_2 L_3 \varepsilon}{\omega (\omega - NL_3)} (1 - e^{(NL_3-\omega)(t-a)}).$$

If $y(a) = y_p(a)$, then clearly $\|y_p(t) - y(t)\| < \left(1 + \frac{NL_2}{\omega - NL_3}\right) \varepsilon$, $t \in [a, a + E]$. Suppose that $y(a) \neq y_p(a)$. For $t \geq a + \frac{1}{NL_3 - \omega} \ln \left(\frac{\varepsilon}{N \|y(a) - y_p(a)\|}\right)$, the inequality $e^{(NL_3-\omega)(t-a)} \leq \frac{\varepsilon}{N \|y(a) - y_p(a)\|}$ is satisfied. Assume that the number E is sufficiently large so that $E > \frac{1}{NL_3 - \omega} \ln \left(\frac{\varepsilon}{N \|y(a) - y_p(a)\|}\right)$. Thus, taking

$$b = \max \left\{a, a + \frac{1}{NL_3 - \omega} \ln \left(\frac{\varepsilon}{N \|y(a) - y_p(a)\|}\right)\right\}$$

and

$$\tilde{E} = \min \left\{E, E - \frac{1}{NL_3 - \omega} \ln \left(\frac{\varepsilon}{N \|y(a) - y_p(a)\|}\right)\right\}$$
one attains \(\| y(t) - y_p(t) \| < \left(\frac{\omega - N L_3 + N L_2}{\omega - N L_3} \right) \epsilon \), for \(t \in [b, b + \tilde{E}] \). Here the number \(\tilde{E} \) stands for the duration of control for system (2.1.2). We note that \(b \geq a \), \(0 < \tilde{E} \leq E \) and \(b + \tilde{E} = a + E \).

Hence \(\| y(t) - y_p(t) \| < (1 + \frac{N L_2}{\omega - N L_3}) \epsilon \), for \(t \in [b, a + E] \).

The proof of the theorem is finalized. □

An immediate corollary of Theorem 2.6 is the following.

Corollary 2.7 Assume that the conditions of Theorem 2.6 hold. In this case, the periodic solution \(z_p(t) \) is stabilized such that for any solution \(z(t) \) of system (2.1.1) + (2.1.2) there exists a number \(b \geq a \) such that the inequality \(\| z_p(t) - z(t) \| \leq \left(\frac{N L_2}{\omega - N L_3} \right) \epsilon \) holds for \(t \in [b, a + E] \), provided that the number \(E \) is sufficiently large.

Proof Making use of the inequality
\[
\| z(t) - z_p(t) \| \leq \| x(t) - x_p(t) \| + \| y(t) - \phi_{x_p(t)}(t) \| ,
\]
and the conclusion of Theorem 2.6, one can show that the inequality
\[
\| z_p(t) - z(t) \| < \left(2 + \frac{N L_2}{\omega - N L_3} \right) \epsilon
\]
holds for \(t \in [b, a + E] \) and for some \(b \geq a \). The proof is completed. □

Remark 2.4 As a conclusion of Theorem 2.6, the transient time for control to take effect may increase and the duration of control may decrease as the number of consecutive replicator systems increase.

In the remaining part of this section, our aim is to present an illustration which confirms the results of Theorem 2.6, and for our purposes, we will make use of the Pyragas control method [29]. Therefore, primarily, we continue with a brief explanation of this method.

A delayed feedback control method for the stabilization of unstable periodic orbits of a chaotic system was proposed by Pyragas [29]. In this method, one considers a system of the form
\[
x' = H(x, q), \tag{2.9.38}
\]
where \(q = q(t) \) is an externally controllable parameter and for \(q = 0 \) it is assumed that the system (2.9.38) is in the chaotic state of interest, whose periodic orbits are to be stabilized [27, 29–31]. According to Pyragas method, an unstable \(\xi \)-periodic solution of the system (2.9.38) with \(q = 0 \), can be stabilized by the control law
q(t) = C [s(t - \xi) - s(t)], where the parameter C represents the strength of the perturbation and s(t) = \sigma [x(t)] is a scalar signal given by some function of the state of the system.

It is indicated in [31] that in order to apply the Pyragas control method to the chaotic Duffing oscillator given by the system

\[
x'_1 = x_2,
\]
\[
x'_2 = -0.10x_2 + 0.5x_1 (1 - x_1^2) + 0.24 \sin t,
\]

one can construct the corresponding control system

\[
\begin{align*}
v'_1 &= v_2 \\
v'_2 &= -0.10v_2 + 0.5v_1 (1 - v_1^2) + 0.24 \sin(v_3) + C [v_2(t - 2\pi) - v_2(t)] \\
v'_3 &= 1,
\end{align*}
\]

where \(q(t) = C [v_2(t - 2\pi) - v_2(t)] \) is the control law, and an unstable 2\pi-periodic solution can be stabilized by choosing an appropriate value for the parameter C.

Now, let us combine system (2.9.39) with two consecutive replicator systems and set up the following 6-dimensional result-system

\[
\begin{align*}
x'_1 &= x_2 \\
x'_2 &= -0.10x_2 + 0.5x_1 (1 - x_1^2) + 0.24 \sin t \\
x'_3 &= x_4 - 0.1x_1 \\
x'_4 &= -3x_3 - 2x_4 - 0.008x_3^3 + 1.6x_2 \\
x'_5 &= x_6 + 0.6x_3 \\
x'_6 &= -3.1x_5 - 2.1x_6 - 0.007x_5^3 + 2.5x_4.
\end{align*}
\]

In system (2.9.41) the subsystems with coordinates \((x_3, x_4)\) and \((x_5, x_6)\) correspond to the first and the second replicator systems, respectively. Since our procedure of morphogenesis is valid for specific types of chaos such as in Devaney’s and Li–Yorke sense and through period-doubling cascade, we expect that our procedure is also applicable to any other chaotic system with an unspecified type of chaos. Accordingly, system (2.9.41) is chaotic since the generator system (2.9.39) is chaotic.

Theorem 2.6 specifies that in order to control the chaos of system (2.9.41) one should control the chaos of the generator system, which is the subsystem of (2.9.41) with coordinates \((x_1, x_2)\). In accordance with this purpose, we will use the Pyragas control method by means of the system

\[
\begin{align*}
v'_1 &= v_2 \\
v'_2 &= -0.10v_2 + 0.5v_1 (1 - v_1^2) + 0.24 \sin(v_3) + C [v_2(t - 2\pi) - v_2(t)] \\
v'_3 &= 1 \\
v'_4 &= v_5 - 0.1v_1 \\
v'_5 &= -3v_4 - 2v_5 - 0.008v_4^3 + 1.6v_2 \\
v'_6 &= v_7 + 0.6v_4 \\
v'_7 &= -3.1v_6 - 2.1v_7 - 0.007v_6^3 + 2.5v_5,
\end{align*}
\]
which is the control system corresponding to (2.9.41).

Let us consider a solution of system (2.9.42) with the initial data
\[v_1(0) = 0.2, \quad v_2(0) = 0.2, \quad v_3(0) = 0, \quad v_4(0) = -0.5, \quad v_5(0) = 0.1, \quad v_6 = -0.2, \quad v_7(0) = 0.1. \]

We let the system evolve freely taking \(C = 0 \) until \(t = 60 \), and at that moment we switch on the control by taking \(C = 0.84 \). At \(t = 200 \), we switch off the control and start to use the value of the parameter \(C = 0 \) again. In Fig. 2.10 one can see the graphs of the \(v_2, v_5, v_7 \) coordinates of the solution. Supporting the result of Theorem 2.6, it is observable in Fig. 2.10 that stabilizing a \(2\pi \)-periodic solution of the generator system provides the stabilization of the corresponding \(2\pi \)-periodic solutions of the replicator systems. After switching off the control, the \(2\pi \)-periodic solutions of the generator and replicators lose their stability and chaos emerges again.

2.10 Miscellany

In this part of the chapter, we intend to consider not rigorously proved, but interesting phenomena which can be considered in the framework of our results. So, we shall give some additional light on the results obtained above and say about the possibility
for the replication of intermittency, Shilnikov orbits and relay systems. We also
demonstrate the possibility of quasiperiodic motions as an infinite basis of chaos.

We start our discussions with replication of intermittency.

2.10.1 Intermittency

In the previous sections, we have rigorously proved replication of specific types
of chaos such as period-doubling cascade, Devaney’s, and Li–Yorke chaos. Conse-
quently, one can expect that the same procedure also works for the intermittency
route.

Pomeau and Manneville [32] observed chaos through intermittency in the Lorenz
system (2.5.20), with the coefficients $\sigma = 10$, $b = 8/3$ and values of r slightly larger
than the critical value $r_c \approx 166.06$. To observe intermittent behavior in the Lorenz
system, let us consider a solution of system (2.5.20) together with the coefficients
$\sigma = 10$, $b = 8/3$, $r = 166.25$ using the initial data $x_1(0) = -23.3$, $x_2(0) = 38.3$
and $x_3(0) = 193.4$. The time-series for the x_1, x_2 and x_3 coordinates of the solution
are indicated in Fig. 2.11, where one can see that regular oscillations are interrupted
by irregular ones.

To perform the replication of intermittency, let us consider the Lorenz system
(2.5.20) as the generator and set up the 6-dimensional result-system

$$
\begin{align*}
 x_1' &= \sigma (-x_1 + x_2) \\
 x_2' &= -x_2 + rx_1 - x_1x_3 \\
 x_3' &= -bx_3 + x_1x_2 \\
 x_4' &= -x_4 + 4x_1 \\
 x_5' &= x_6 + 2x_2 \\
 x_6' &= -3x_5 - 2x_6 - 0.00005x_3^3 + 0.5x_4,
\end{align*}
$$

(2.10.43)

![Fig. 2.11](image-url) Intermittency in the Lorenz system (2.5.20), where $\sigma = 10$, $b = 8/3$ and $r = 166.25$. a The graph of the x_1-coordinate. b The graph of the x_2-coordinate. c The graph of the x_3-coordinate
Intermittency in the replicator system. a The graph of the x_4-coordinate. b The graph of the x_5-coordinate. c The graph of the x_6-coordinate. The analogy between the time series of the generator and the replicator systems indicates the morphogenesis of intermittency again with the coefficients $\sigma = 10$, $b = 8/3$ and $r = 166.25$. It can be easily verified that condition (A7) is valid for system (2.10.43). We consider the trajectory of system (2.10.43) corresponding to the initial data $x_1(0) = -23.3$, $x_2(0) = 38.3$, $x_3(0) = 193.4$, $x_4(0) = -17.7$, $x_5(0) = 11.4$, and $x_6(0) = 2.5$, and represent the graphs for the x_4, x_5 and x_6 coordinates in Fig. 2.12 such that the intermittent behavior in the replicator system is observable. The similarity between the graphs of the coordinates corresponding to the generator and the replicator counterpart reveals the replication of intermittency.

2.10.2 Shilnikov Orbits

To illustrate that by our method it may also be possible to replicate strange attractors [33–35], let us provide simulations of homoclinic and complicated Shilnikov orbits (Figs. 2.13 and 2.14 correspondingly).

As a model for Shilnikov’s orbits, the paper [36] considers the system

$$
\begin{align*}
 x'_1 &= x_2 \\
 x'_2 &= x_3 \\
 x'_3 &= -x_2 - \beta x_3 + f_\mu(x_1),
\end{align*}
$$

(2.10.44)

where

$$
 f_\mu(x) = \begin{cases}
 1 - \mu x, & \text{if } x > 0 \\
 1 + \alpha x, & \text{if } x \leq 0.
 \end{cases}
$$

(2.10.45)
Fig. 2.13 Replication of a Shilnikov type homoclinic orbit. In picture (a), one can see the projection on the $x_1 - x_2 - x_3$ space of the trajectory of system (2.10.46) corresponding to the initial data $x_1(0) = 1.57590$, $x_2(0) = 0$, $x_3(0) = 0$, $x_4(0) = -0.78795$, $x_5(0) = 0$ and $x_6(0) = 0$. The picture in (b) shows the projection on the $x_4 - x_5 - x_6$ space of the same trajectory. The parameter values $\alpha = 0.633625$, $\beta = 0.3375$ and $\mu = 2.16$ are used in the simulation. The picture in (a) represents a Shilnikov type homoclinic orbit corresponding to the generator system (2.10.44), while the picture in (b) shows its replication through the system (2.10.46).

Fig. 2.14 Projections of a complicated orbit of system (2.10.46) with $\alpha = 0.633625$, $\beta = 0.3375$ and $\mu = 0.83$. (a) Projection on the $x_1 - x_2 - x_3$ space. (b) Projection on the $x_4 - x_5 - x_6$ space. The initial data $x_1(0) = 1.57590$, $x_2(0) = 0$, $x_3(0) = 0$, $x_4(0) = -0.78795$, $x_5(0) = 0$, $x_6(0) = 0$ is used for the illustration. The picture in (a) represents the behavior of the trajectory corresponding to the generator (2.10.44), while the picture in (b) illustrates its replication.

The values $\alpha = 0.633625$, $\beta = 0.3375$ and the parameter μ used in system (2.10.44) are taken from [23]. The point $e_0 = (-1/\alpha, 0, 0)$ is an equilibrium point of system (2.10.44), and the eigenvalues of the matrix of linearization at e_0 are 0.4625, $-0.4 \pm 1.1i$ such that the condition of the Shilnikov’s theorem about eigenvalues [37] is satisfied. For values of the parameter μ near 2.16, system (2.10.44) possesses a special type homoclinic orbit—Shilnikov orbit, and its presence implies chaotic dynamics [23]. In this case, Shilnikov’s theorem asserts that every neighborhood of the homoclinic orbit contains a countably infinite number of unstable periodic orbits [36, 37].
To demonstrate numerically the replication of a Shilnikov orbit, let us consider the following system

\[
\begin{align*}
 x'_1 &= x_2 \\
 x'_2 &= x_3 \\
 x'_3 &= -x_2 - \beta x_3 + f_\mu(x_1) \\
 x'_4 &= -2x_4 + x_1 \\
 x'_5 &= -0.6x_5 + 2x_2 + 0.1x_2^3 \\
 x'_6 &= -1.2x_6 + 0.001 \sin(x_6) + x_3,
\end{align*}
\] (2.10.46)

where, again, the function \(f_\mu(x) \) is given by formula (2.10.45).

System (2.10.44) is used as a generator in system (2.10.45), where the last three coordinates are of a replicator. Let us consider system (2.10.46) with the values \(\alpha = 0.633625 \), \(\beta = 0.3375 \) and \(\mu = 2.16 \) once again. In Fig. 2.13 we show the trajectory of this system with initial data \(x_1(0) = -1.5759 \), \(x_2(0) = 0 \), \(x_3(0) = 0 \), \(x_4(0) = -0.78795 \), \(x_5(0) = 0 \) and \(x_6(0) = 0 \). The picture in Fig. 2.13a, where we illustrate the projection of the trajectory on the \(x_1 - x_2 - x_3 \) space represents, in fact, the Shilnikov orbit corresponding to the generator system (2.10.44). On the other hand, the picture in Fig. 2.13b, shows the projection of the trajectory on the \(x_4 - x_5 - x_6 \) space and in this picture the replication of the Shilnikov orbit is observable.

Next, we consider system (2.10.46) with the values \(\alpha = 0.633625 \), \(\beta = 0.3375 \), \(\mu = 0.83 \) and take the trajectory of this system with the same initial data as above. In Fig. 2.14a, b, we represent the projections of this trajectory on the \(x_1 - x_2 - x_3 \) and \(x_4 - x_5 - x_6 \) spaces, respectively. The picture in (a) represents the complicated behavior of the generator system (2.10.44) and one can see in picture (b) the replication of this behavior.

We suppose that theoretical affirmation of our simulation results can be done if one considers interpretation of Shilnikov’s theorem [37] for the multidimensional replicator. That is, we are still questioning whether our approach can be somehow combined with methods indicating chaos through Shilnikov type strange attractors [33, 35]. At least, it is easy to see that a homoclinic trajectory exists for a replicator as well as a denumerable set of unstable periodic solutions.

In next our discussion, we will emphasize by means of simulations the morphogenesis of the double-scroll Chua’s attractor in a unidirectionally coupled open chain of Chua circuits. Approaches for the generation of hyperchaotic systems have already been discussed making use of Chua circuits which are all chaotic [38, 39]. It deserves to remark that to create hyperchaotic attractors in previous papers, others consider both involved interacting systems chaotic, but in our case only the first link of the chain is chaotic and other consecutive Chua systems are all non-chaotic.
2.10.3 Morphogenesis of the Double-Scroll Chua’s Attractor

The type of chaos for the double-scroll Chua circuit is proposed in paper [40]. It is an interesting problem to prove that this type of chaos can be replicated through the method discussed in this chapter. Nevertheless, we will show by simulations that the regular behavior in Chua circuits placed in the extension mechanism can also be seen. This means that next special investigation has to be done. Moreover, this will show how one can use morphogenesis not only for chaos, but also for Chua circuits by uniting them in complexes in electrical (physical) sense, and observing the same properties as a unique separated Chua circuit admits. This is an interesting problem which can give a light for the complex behavior of huge electrical circuits.

There is a well-known result of the chaoticity based on the double-scroll Chua’s attractor [41]. It was proven first in the paper [40] rigorously, and the proof is based on the Shilnikov’s theorem [37]. Since the Chua circuit and its chaotic behavior is of extreme importance from the theoretical point of view and its usage area in electrical circuits by radio physicists and nonlinear scientists from other disciplines, one can suppose that morphogenesis of the chaos will also be of a practical and a theoretical interest.

We just take into account a simulation result which supports that morphogenesis idea can be developed also from this point of view.

Let us consider the dimensionless form of the Chua’s oscillator given by the system

\[\begin{align*}
 x_1' &= k \alpha [x_2 - x_1 - f(x_1)] \\
 x_2' &= k(x_1 - x_2 + x_3) \\
 x_3' &= k(-\beta x_2 - \gamma x_3) \\
 f(x) &= bx + 0.5(a - b)(|x + 1| + |x - 1|),
\end{align*} \]

(2.10.47)

where \(\alpha, \beta, \gamma, a, b \) and \(k \) are constants.

In paper [42], it is indicated that system (2.10.47) with the coefficients \(\alpha = 21.32/5.75, \beta = 7.8351, \gamma = 1.38166392/12, a = -1.8459, b = -0.86604 \) and \(k = 1 \) admits a stable equilibrium.

In what follows, as the generator, we make use of system (2.10.47) together with the coefficients \(\alpha = 15.6, \beta = 25.58, \gamma = 0, a = -8/7, b = -5/7 \) and \(k = 1 \) such that a double-scroll Chua’s attractor takes place [22], and consider the following 12-dimensional result-system:
2.10.4 Quasiperiodicity in Chaos

System (2.10.48) consists of four unidirectionally coupled Chua circuits such that the subsystems with coordinates \((x_1, x_2, x_3), (x_4, x_5, x_6), (x_7, x_8, x_9)\) and \((x_{10}, x_{11}, x_{12})\) correspond to the first, second, third, and the fourth links of the open chain of circuits.

In Fig. 2.15, we simulate the 3-dimensional projections on the \(x_1 - x_2 - x_3\) and \(x_4 - x_5 - x_6\) spaces of the trajectory of the result-system (2.10.48) with the initial data \(x_1(0) = 0.634, x_2(0) = -0.093, x_3(0) = -0.921, x_4(0) = -8.013, x_5(0) = 0.221, x_6(0) = 6.239, x_7(0) = -50.044, x_8(0) = -0.984, x_9(0) = 48.513, x_{10}(0) = -256.325, x_{11}(0) = 7.837, x_{12}(0) = 264.331\). The projection on the \(x_1 - x_2 - x_3\) space shows the double-scroll Chua’s attractor produced by the generator system (2.10.47), and projection on the \(x_4 - x_5 - x_6\) space represents the chaotic attractor of the first replicator.

In a similar way, we display the projections of the same trajectory on the \(x_7 - x_8 - x_9\) and \(x_{10} - x_{11} - x_{12}\) spaces, which correspond to the attractors of the second and the third replicator systems, in Fig. 2.16. The illustrations shown in Figs. 2.15 and 2.16 indicate the extension of chaos in system (2.10.48). Possibly the result-system (2.10.48) produces a double-scroll Chua’s attractor with hyperchaos, where the number of positive Lyapunov exponents are more than one and even four.

\[
x_1' = 15.6 [x_2 - (2/7)x_1 + (3/14) (|x_1 + 1| + |x_1 - 1|)]
\]
\[
x_2' = x_1 - x_2 + x_3
\]
\[
x_3' = -25.58 x_2
\]
\[
x_4' = (21.32/5.75)[x_5 - 0.13396x_4 + 0.48993 (|x_4 + 1| + |x_4 - 1|)] + 2x_1
\]
\[
x_5' = x_4 - x_5 + x_6 + 5x_2
\]
\[
x_6' = -7.8351x_5 - (1.38166392/12)x_6 + 2x_3
\]
\[
x_7' = (21.32/5.75)[x_8 - 0.13396x_7 + 0.48993 (|x_7 + 1| + |x_7 - 1|)] + 2x_4
\]
\[
x_8' = x_7 - x_8 + x_9 + 3x_5
\]
\[
x_9' = -7.8351x_8 - (1.38166392/12)x_9 - 0.001x_6
\]
\[
x_{10}' = (21.32/5.75)[x_{11} - 0.13396x_{10} + 0.48993 (|x_{10} + 1| + |x_{10} - 1|)] + 4x_7
\]
\[
x_{11}' = x_{10} - x_{11} + x_{12} - 0.1x_8
\]
\[
x_{12}' = -7.8351x_{11} - (1.38166392/12)x_{12} + 2x_9.
\]
Fig. 2.15 3-dimensional projections of the chaotic attractor of the result-system \((2.10.48)\). \textbf{a} Projection on the \(x_1 - x_2 - x_3\) space. \textbf{b} Projection on the \(x_4 - x_5 - x_6\) space. The picture in (a) shows the attractor of the original prior chaos of the generator system \((2.10.47)\) and (b) represents the attractor of the first replicator. The resemblance between shapes of the attractors of the generator and the replicator systems makes the extension of chaos apparent.

Fig. 2.16 3-dimensional projections of the chaotic attractor of the result-system \((2.10.48)\). \textbf{a} Projection on the \(x_7 - x_8 - x_9\) space. \textbf{b} Projection on the \(x_{10} - x_{11} - x_{12}\) space. (a) and (b) demonstrates the attractors generated by the second and the third replicator systems, respectively

\[
x'' + 0.168x' - 0.5x \left(1 - x^2 \right) = \mu \sin t, \quad (2.10.49)
\]

where \(\mu\) is a parameter, admits the chaos through period-doubling cascade at the parameter value \(\mu = \mu_\infty \equiv 0.21\). That is, at the parameter value \(\mu = \mu_\infty\), for each natural number \(k\) the Eq. \((2.10.49)\) admits infinitely many periodic solutions with periods \(2k\pi\). Using the change of variables \(t = 2\pi s\) and \(x(t) = y(s)\), and relabeling \(s\) as \(t\), one attains the following equation:

\[
y'' + 0.168\pi y' - 0.5\pi^2 y \left(1 - y^2 \right) = \pi^2 \mu \sin(\pi t). \quad (2.10.50)
\]
Likewise Eq. (2.10.49), it is clear that Eq. (2.10.50), when considered with \(\mu = \mu_\infty \), also admits the chaos through period-doubling cascade and has infinitely many periodic solutions with periods 2, 4, 8, \ldots.

Using the new variables \(x_1 = x \), \(x_2 = x' \) and \(x_3 = y \), \(x_4 = y' \), one can convert the Eqs. (2.10.49) and (2.10.50) to the systems

\[
\begin{align*}
 x'_1 &= x_2 \\
 x'_2 &= -0.168x_2 + 0.5x_1 \left(1 - x_1^2\right) + \mu \sin t
\end{align*}
\]

(2.10.51)

and

\[
\begin{align*}
 x'_3 &= x_4 \\
 x'_4 &= -0.168\pi x_4 + 0.5\pi^2 x_3 \left(1 - x_3^2\right) + \pi^2 \mu \sin(\pi t),
\end{align*}
\]

(2.10.52)

respectively. Now, we shall make use both of the systems (2.10.51) and (2.10.52), with \(\mu = \mu_\infty \), as generators to obtain a chaotic system with infinitely many quasiperiodic solutions. We mean that the two systems admit incommensurate periods and consequently their influence on the replicator will be quasiperiodic. In this case, one can expect that replicator will expose infinitely many quasiperiodic solutions. For that purpose, let us consider the 6-dimensional result-system

\[
\begin{align*}
 x'_1 &= x_2 \\
 x'_2 &= -0.168x_2 + 0.5x_1 \left(1 - x_1^2\right) + 0.21 \sin t \\
 x'_3 &= x_4 \\
 x'_4 &= -0.168\pi x_4 + 0.5\pi^2 x_3 \left(1 - x_3^2\right) + 0.21\pi^2 \sin(\pi t) \\
 x'_5 &= x_6 + x_1 + x_3 \\
 x'_6 &= -3x_5 - 2x_6 - 0.008x_3^3 + x_2 + x_4,
\end{align*}
\]

(2.10.53)

where the last two equations are of a replicator.

To reveal existence of quasiperiodic solutions embedded in the chaotic attractor of system (2.10.53) we control the chaos of system (2.10.53) by the Pyragas method through the following control system

\[
\begin{align*}
 v'_1 &= v_2 \\
 v'_2 &= -0.168v_2 + 0.5v_1 \left(1 - v_1^2\right) + 0.21 \sin v_3 \\
 &\quad + C_1(v_2(t - 2\pi) - v_2(t)) \\
 v'_3 &= 1 \\
 v'_4 &= v_5 \\
 v'_5 &= -0.168\pi v_5 + 0.5\pi^2 v_4 \left(1 - v_4^2\right) + 0.21\pi^2 \sin(\pi v_6) \\
 &\quad + C_2(v_5(t - 2\pi) - v_5(t)) \\
 v'_6 &= 1 \\
 v'_7 &= v_8 + v_1 + v_4 \\
 v'_8 &= -3v_7 - 2v_8 - 0.008v_7^3 + v_2 + v_5.
\end{align*}
\]

(2.10.54)
Fig. 2.17 Pyragas control method applied to the result-system (2.10.53) by means of the corresponding control system (2.10.54). a The graph of the v_2-coordinate. b The graph of the v_5-coordinate. c The graph of the v_8-coordinate. The simulation for the result-system (2.10.53) is provided such that in (a) and (b) periodic solutions with incommensurate periods 2 and 2π are controlled by Pyragas method and in (c) a quasiperiodic solution of the replicator system is pictured. The control starts at $t = 35$ and ends at $t = 120$. After switching off the control, chaos emerges again and irregular behavior reappears. For the coordinates v_1, v_4 and v_7 we have similar illustrations which are not indicated here.

We take into account the solution of the result-system (2.10.53) with the initial data $v_1(0) = 0.4$, $v_2(0) = -0.1$, $v_3(0) = 0$, $v_4(0) = -0.2$, $v_5(0) = 0.5$, $v_6(0) = 0$, $v_7(0) = 1.1$ and $v_8(0) = 2.5$. The simulation results are shown in Fig. 2.17. The control mechanism starts at $t = 35$ and ends at $t = 120$. The chaos not only in the generator systems, but also in the replicator counterpart is observable before the control is switched on. During the control, we make use of the values of $C_1 = 0.62$ and $C_2 = 2.58$ to stabilize the periodic solutions corresponding to the generator systems (2.10.51) and (2.10.52) with periods 2π and 2, respectively. Up to $t = 35$ and after $t = 120$ the values $C_1 = C_2 = 0$ are used. Between $t = 35$ and $t = 120$, the quasiperiodic solution of the replicator is stabilized and after $t = 120$ chaos in the system (2.10.53) develops again.

Possibly the obtained simulation result and previous theoretical discussions can give a support to the idea of quasiperiodical cascade for the appearance of chaos which can be considered as a development of the popular period-doubling route to chaos.

In paper [44], it has been mentioned that, in general, in the place of countable set of periodic solutions to form chaos, one can take an uncountable collection of Poisson stable motions which are dense in a quasi-minimal set. This can be also observed in Horseshoe attractor [45]. These emphasize that our simulation of quasiperiodic solutions can be considered as another evidence for the theoretical results.
2.10.5 Replicators with Nonnegative Eigenvalues

We recall that in our theoretical discussions, all eigenvalues of the real-valued constant matrix A, used in system (2.1.2), are assumed to have negative real parts. Now, as open problems from the theoretical point of view, we shall discuss through simulations the problem of chaos replication in the case when the matrix A possesses an eigenvalue with positive or zero real part.

First, we are going to concentrate on the case of the existence of an eigenvalue with positive real part. Let us make use of the Lorenz system (2.5.20) together with the coefficients $\sigma = 10$, $r = 28$ and $b = 8/3$ as the generator, which is known to be chaotic [21, 46], and set up the 6-dimensional result-system

$$
\begin{align*}
x_1' &= -10x_1 + 10x_2 \\
x_2' &= -x_2 + 28x_1 - x_1x_3 \\
x_3' &= -(8/3)x_3 + x_1x_2 \\
x_4' &= -2x_4 + x_1 \\
x_5' &= -3x_5 + x_2 \\
x_6' &= 4x_6 - x_6^3 + x_3.
\end{align*}
$$

(2.10.55)

It is crucial to note that system (2.10.55) is of the form of system (2.1.1) + (2.1.2), where the matrix A admits the eigenvalues -2, -3 and 4, such that one of them is positive. We take into account the solution of system (2.10.55) with the initial data $x_1(0) = -12.7$, $x_2(0) = -8.5$, $x_3(0) = 36.5$, $x_4(0) = -3.4$, $x_5(0) = -3.2$, $x_6(0) = 3.7$ and visualize in Fig. 2.18 the projections of the corresponding trajectory on the $x_1 - x_2 - x_3$ and $x_4 - x_5 - x_6$ spaces. It is seen that the replicator system admits the chaos and the input–output analysis works for system (2.10.55).

![Fig. 2.18 3-dimensional projections of the chaotic attractor of the result-system (2.10.55). a Projection on the $x_1 - x_2 - x_3$ space. b Projection on the $x_4 - x_5 - x_6$ space. In (a), the famous Lorenz attractor produced by the generator system (2.5.20) with coefficients $\sigma = 10$, $r = 28$ and $b = 8/3$ is shown. In (b), as in usual way, the projection of the chaotic attractor of the result-system (2.10.55), which can separately be considered as a chaotic attractor, is presented. Possibly one can call the attractor of the result-system as 6D Lorenz attractor.](image-url)
Next, we continue to our discussion with the case of the existence of an eigenvalue with a zero real part. This time we consider the chaotic Rössler system \cite{46, 47} described by

\begin{align}
 x'_1 &= -(x_2 + x_3) \\
 x'_2 &= x_1 + 0.2x_2 \\
 x'_3 &= 0.2 + x_3(x_1 - 5.7) \\
\end{align}

(2.10.56)

as the generator and constitute the result-system

\begin{align}
 x'_1 &= -(x_2 + x_3) \\
 x'_2 &= x_1 + 0.2x_2 \\
 x'_3 &= 0.2 + x_3(x_1 - 5.7) \\
 x'_4 &= -4x_4 + x_1 \\
 x'_5 &= -x_5 + x_2 \\
 x'_6 &= -0.2x_6^3 + x_3. \\
\end{align}

(2.10.57)

In this case, one can consider system (2.10.57) as in the form of (2.1.1) + (2.1.2) where the matrix A is a diagonal matrix with entries $-4, -1, 0$ on the diagonal and admits the number 0 as an eigenvalue. We simulate the solution of system (2.10.57) with the initial data $x_1(0) = 4.6, x_2(0) = -3.3, x_3(0) = 0, x_4(0) = 1, x_5(0) = -3.7$ and $x_6(0) = 0.8$. The projections of the trajectory on the $x_1 - x_2 - x_3$ and $x_4 - x_5 - x_6$ spaces are seen in Fig. 2.19. The simulation results confirm that the replicator mimics the complex behavior of the generator system.

These results of the simulations request more detailed investigation which concern not only the theoretical existence of chaos, but also its resistance and stability.

![Fig. 2.19](image-url) 3-dimensional projections of the chaotic attractor of the result-system (2.10.57). a Projection on the $x_1 - x_2 - x_3$ space. b Projection on the $x_4 - x_5 - x_6$ space. The picture in (a) indicates the famous Rössler attractor produced by the generator system (2.10.56). The similarity between the illustrations presented in (a) and (b) supports the morphogenesis of chaos. The attractor of the result-system (2.10.57) can be possibly called as $6D$ Rössler attractor.
2.11 Notes

In this chapter, we show that a known type of chaos, such as the one obtained through period-doubling cascade and in the sense of Devaney or Li–Yorke, can be extended to systems with arbitrary large dimensions. More precisely, we provide the replication of chaos between unidirectionally coupled systems such that a result-system admitting the same type of chaos is obtained. The definitions of chaotic sets as well as the hyperbolic sets of continuous functions are introduced, and the replication of the chaos is proved rigorously. The considered morphogenesis mechanism is based on a chaos generating element inserted in a network of systems. Replication of intermittency as well as Shilnikov orbits are discussed. Morphogenesis of the double-scroll Chua’s attractor and quasiperiodical motions as a possible skeleton of a chaotic attractor are demonstrated numerically. The presented technique is useful for creating chaos in systems that are encountered in mechanics, electrical systems, economic theory, meteorology, neural networks theory, and communication systems.

The concept of self-replicating machines, in the abstract sense, starts with the ideas of von Neumann [48], and these ideas are supposed to be the origins of cellular automata theory [49]. Morphogenesis was deeply involved in mathematical discussions through Turing’s investigations [50] as well as in the concept of structural stability [51]. In this chapter, the term “morphogenesis” is used in the meaning of “processes creating forms” where we accept the form not only as a type of chaos, but also accompanying concepts as the structure of the chaotic attractor, its fractal dimension, form of the bifurcation diagram, the spectra of Lyapunov exponents, inheritance of intermittency, etc. This is similar to the idea such that morphogenesis is used in fields such as urban studies [52], architecture [53], mechanics [54], computer science [55], linguistics [56], and sociology [57, 58]. The results of this chapter were published in the paper [59].

References

34. J. Guckenheimer, P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1997)
51. R. Thom, Stabilité Structurelle et Morphogénèse (W.A. Benjamin, New York, 1972)