Contents

1 Research Background and Motivation .. 1
 1.1 General Concept of Anodic Porous Alumina 1
 1.2 Various Applications of Anodic Porous Alumina 2
 1.2.1 Applications in Photonic Crystals 2
 1.2.2 Applications in Energy Storage and Conversion 3
 1.2.3 Applications in Bio-devices 4
 1.2.4 Applications in Electronic/Magnetic Devices 5
 1.3 Formation Mechanisms of Anodic Porous Alumina 6
 1.4 Fabrication Methods for Self-ordered Anodic
 Porous Alumina ... 10
 1.4.1 Mild Anodization and Hard Anodization 10
 1.4.2 Anodization with Prepatterns on Aluminum
 Substrate .. 11
 1.4.3 Anodic Porous Alumina Formed on Aluminum
 Grains with Different Crystallographic
 Orientations ... 12
 1.4.4 Other Anodization Methods 13
 1.5 Objectives and Flow of the Present Research 13
References .. 15

Part I Modelling, Numerical Simulation, and Experimental
Verification of Self-ordering in Anodic Porous Alumina

2 Establishment of a Kinetics Model 23
 2.1 Introduction .. 23
 2.2 Electric Potential Distribution Within Anodic
 Porous Alumina ... 23
Part III Electro-Chemo-Mechanical Actuations of Anodic Porous Alumina

8 Charge-Induced Reversible Bending in Anodic Porous Alumina–Aluminum Composites
 8.1 Introduction ... 129
 8.2 Direct Observation of the Reversible Bending by Optical Microscope. 130
 8.3 Detection of the Reversible Bending by In Situ Nanoindentation 133
 8.4 Discussion of the Reversible Bending ... 137
 8.5 Summary ... 140
 References ... 140

9 Chemomechanical Softening During In Situ Nanoindentation of Anodic Porous Alumina with Anodization Processing ... 143
 9.1 Introduction ... 143
 9.2 Experimental Method ... 144
 9.2.1 Electrochemical Cell Setup. 144
 9.2.2 In Situ and Ex Situ Nanoindentation 145
 9.2.3 Drift Correction Method for Nanoindentation 145
 9.2.4 In Situ and Ex Situ Microindentation 147
 9.2.5 Electron Microscopic Characterization 148
 9.3 Softening During In Situ Nanoindentation ... 148
 9.4 Possible Explanations of the In Situ Softening ... 153
 9.4.1 Electric-Field Assisted Softening of the Oxide 153
 9.4.2 Enhancement of Electrochemical Reactions at the Metal/Oxide Interface 154
 9.4.3 Enhancement of Dislocation Activities in Aluminum Substrate 154
 9.5 TEM Examination of Deformation of Oxide and Aluminum Substrate 155
 9.6 Enhancement of Electrochemical Reactions at the Metal/Oxide Interface by High Electric-Field and Stresses ... 157
 9.7 Summary ... 159
 References ... 160
10 Conclusions and Future Work .. 161
 10.1 Conclusions .. 161
 10.2 Future Work .. 164
 10.2.1 Modeling and Numerical Simulation 164
 10.2.2 Fabrication ... 165
 10.2.3 Actuation .. 165
References ... 166

Appendix I: Calculation Program for Pore Channel Growth
 in Anodic Porous Alumina 167

Appendix II: Calculation Program for Evaluation
 of Self-ordering in Anodic Porous Alumina 229
2015, XVII, 278 p. 70 illus., 49 illus. in color., Hardcover ISBN: 978-3-662-47267-5