Contents

1 Sole of Concrete—Mix Proportion 1
 1.1 Theoretical Foundation for Past Mix Proportion 2
 1.1.1 Specific Surface Area Method 2
 1.1.2 Maximum Density Method 4
 1.1.3 Weymouth Grap Grading Method 5
 1.2 Inadaptability Between Old Mix Proportion and Modern Concrete ... 7
 1.3 Reasons and Puzzles 11
 1.4 Thinking About Establishing the Modern Concrete Mix Proportion Theory 13
 A.1 Others ... 19
 A.1.1 Different Opinions 19
 References ... 23

2 Important Raw Material—Coarse Aggregate 25
 2.1 Aggregate Varieties and Causes Overview 25
 2.2 Effects of Different Rock Aggregates on Performance of Concrete ... 30
 2.2.1 Effects on Strength 30
 2.2.2 Effects of Rock Mechanical Property on Other Performances of Concrete 32
 2.3 Two Different Opinions 32
 2.3.1 Different Opinions About Rock Strength Requirement in Specification 32
 2.3.2 Utilization of Gravel 33
 References ... 34

3 Core Raw Material—Cement 35
 3.1 Effects of Cement Property Indexes on Concrete Performance ... 35
 3.2 Overview of Cement Production Process 39
8.2.2 Seven Problems Difficult to Solve 96
8.2.3 Eleven Problems Able To Solve 97
8.3 Category of Cracks .. 98
 8.3.1 Cracks of Water Loss 99
 8.3.2 Temperature Crack 99
 8.3.3 Drying Shrinkage Crack 100
 8.3.4 Stress Cracks .. 100
8.4 Cause, Detriment, and Prevention of Dehydration Crack 102
 8.4.1 Causes for Dehydration Crack 103
 8.4.2 Harm of Dehydration Crack 103
 8.4.3 Prevention and Treatment for Dehydration Crack 104
References ... 105

9 Fly Ash, Really Only Advantages? 107
 9.1 Problems Unsolved in the Utilization of Fly Ash 107
 9.1.1 Problems Unsolved Theoretically 107
 9.1.2 Unsolved Technological Problems in Engineering .. 108
 9.2 Several Practical Projects 109
 9.2.1 The Concrete Surface of a Parking Apron in South China 109
 9.2.2 The Concrete Surface of a Parking Apron in North China 112
 9.2.3 Universal Harmless Cracks Phenomena in the Construction of Airport .. 113
 9.2.4 The Floorslab of Terminal Buildings in an Airport in North China 113
 9.2.5 Floor in a Plant in Southwest China 115
 9.2.6 Other Cases .. 117
 9.3 Conclusions ... 119
References ... 120

10 Admixtures: All Medicines Have Their Own Side Effects 121
 10.1 Negative Effects of Several Main Chemical Admixtures of the Author .. 121
 10.1.1 Water Reducer 121
 10.1.2 Air-Entraining Agent 122
 10.1.3 Expansive Agent 123
 10.1.4 Early-Strength Agent 123
 10.2 Serious Quality Accident Caused by Improper Chemical Admixture Dosage .. 124
 10.2.1 Water Reducer 124
 10.2.2 Retarding Agents 125
10.2.3 Early-Strength Agent 127
10.2.4 Others .. 127
10.3 What Is the Correct Using Method
of Chemical Admixtures? 128
10.4 Conclusions ... 128
References .. 129

11 Fatal Factor for Durability: Drying Shrinkage 131
11.1 Generating Process of Drying Shrinkage Crack 131
11.2 Harm of Dehydration Crack 132
11.2.1 Drying Shrinkage Crack has Great Effects
on Flexural Strength and Directly Threatens Safety
of Concrete Structure 135
11.2.2 Structures Destroyed Directly in Some Regions 137
11.2.3 Frost Resistance and Impermeability of Pavement
Concrete are Decreased in Cold Regions 140
11.2.4 The Durability and Security of Thin-Walled Structure
and Reinforced Concrete Structure with Small
Protection Layer ... 140
11.2.5 In Some Regions in the South and North, Drying
Shrinkage Crack is also Manifested as a Kind
of Shallow and Harmless Crack Which has no
Practical Effects on Security and Durability
of Engineerings ... 144
11.3 Causes for Drying Shrinkage Crack 145
11.4 Conclusions ... 147
References .. 148

12 Physician of Concrete—Self-healing 149
12.1 Discovery of Self-curing Phenomenon 149
12.2 Cause Analysis .. 157
12.3 Application of Self-curing Principle During
Practical Engineering 158
12.4 Conclusions ... 162

13 High-Performance Concrete, Really High Performance? 165
13.1 Difference Between Normal Concrete
and High-Performance Concrete 165
13.2 Comparison of Application Effect During
Practical Engineering 168
13.3 Conclusions ... 169
References .. 170
14 What Is the Correct Idea for Durability Research? 171
 14.1 Reason for Poorer Durability and Research Mistakes 171
 14.2 Correct Method for Solving Durability Problem 173
 14.3 Conclusions .. 177
 References ... 177

15 Scientific Foundation of Modern Concrete 179
 15.1 Discovery of Problems .. 180
 15.2 Conception of the Second-stage Concrete 183
 15.3 “Three-Stage Hypothesis” 186
 15.4 Cause Analysis .. 192
 15.5 Scientific Meaning of Three-stage Theory Toward Modern Concrete .. 196
 15.6 Conclusions ... 198
 References ... 199

16 Summary Report of Experimental Study on Dehydration Crack Appearing in the Construction of Turpan Civil Airport Cement Concrete Pavement 201
 16.1 Experimental Meaning and Purpose 201
 16.1.1 Experimental Meaning 202
 16.1.2 Aims of the Experiments 203
 16.2 Experimental Program .. 204
 16.2.1 Emerging Time, Size, Shape, and Character of Dehydration Crack .. 204
 16.2.2 Harmfulness of Dehydration Crack 205
 16.2.3 Causes for Generation of Dehydration Crack 207
 16.2.4 Experimental Program 207
 16.2.5 Organizations and Division of Labor 215
 16.3 Experimental Procedures 217
 16.3.1 Preparation of Materials, Crews, and Machines 217
 16.3.2 Concrete Mix Proportion 217
 16.3.3 Process Controlling .. 219
 16.3.4 Process of Curing and Observing 230
 16.3.5 Experiment on Penetration Speed 234
 16.3.6 Experiment on Water-to-Cement Ratio (W/C) 237
 16.4 Experimental Summary and Conclusion 240
 16.4.1 Introduction .. 240
 16.4.2 Summary on Environment Climate Influence 240
 16.4.3 Summary on Raw Materials 242
 16.4.4 Summary on Concrete Mix Proportion 244
 16.4.5 Summary on Adding Polyester Fiber 247
 16.4.6 Summary on net-shaped Crack 249
16.4.7 Summary on Construction Technology 251
16.4.8 General Conclusions 253
16.5 Total Requirements for Construction of Concrete
Used in Turpan Airport 253
16.5.1 Requirements for Construction Preparation 254
16.5.2 Controlling of Construction Process 254
References ... 258

Appendix A .. 259

Appendix B .. 267

Appendix C .. 271
The Issues and Discussion of Modern Concrete Science
Yang, W.
2015, XV, 273 p. 115 illus., Hardcover
ISBN: 978-3-662-47246-0