Part I Basic Problems

1 Principles of Vector Orientation and Vector Orientated Control Structures for Systems Using Three-Phase AC Machines ... 3
 1.1 Formation of the Space Vectors and Its Vector Orientated Philosophy ... 3
 1.2 Basic Structures with Field-Orientated Control for Three-Phase AC Drives ... 8
 1.3 Basic Structures of Grid Voltage Orientated Control for DFIM Generators .. 12
 References .. 16

2 Inverter Control with Space Vector Modulation .. 17
 2.1 Principle of Vector Modulation .. 17
 2.2 Calculation and Output of the Switching Times ... 23
 2.3 Restrictions of the Procedure .. 25
 2.3.1 Actually Utilizable Vector Space .. 25
 2.3.2 Synchronization Between Modulation and Signal Processing ... 27
 2.3.3 Consequences of the Protection Time and Its Compensation ... 28
 2.4 Realization Examples ... 30
 2.4.1 Modulation with Microcontroller SAB 80C166 ... 31
 2.4.2 Modulation with Digital Signal Processor TMS 320C20/C25 ... 35
 2.4.3 Modulation with Double Processor Configuration .. 41
2.5 Special Modulation Procedures 45
 2.5.1 Modulation with Two Legs 45
 2.5.2 Synchronous Modulation 46
 2.5.3 Stochastic Modulation 48
2.6 Degrees of Freedom in Modulation 53
 2.6.1 Modulation with Different Combinations
 of Component Vectors 54
 2.6.2 Modulation with Different Sequences
 of Component Vectors 55
 2.6.3 Execution Time of Zero Vectors 57
References .. 58

3 Machine Models as Prerequisite to Design the Controllers
and Observers .. 61
 3.1 General Issues of State Space Representation 61
 3.1.1 Continuous State Space Representation 61
 3.1.2 Discontinuous State Space Representation 63
 3.2 Induction Machine with Squirrel-Cage Rotor (IM) 68
 3.2.1 Continuous State Space Models of the IM
 in Stator-Fixed and Field-Synchronous
 Coordinate Systems 69
 3.2.2 Discrete State Space Models of the IM 77
 3.3 Permanent Magnet Excited Synchronous Machine (PMSM) 83
 3.3.1 Continuous State Space Model of the PMSM
 in the Field Synchronous Coordinate System 83
 3.3.2 Discrete State Space Model of the PMSM 86
 3.4 Doubly-Fed Induction Machine (DFIM) 88
 3.4.1 Continuous State Space Model of the DFIM
 in the Grid Synchronous Coordinate System 88
 3.4.2 Discrete State Model of the DFIM 91
 3.5 Generalized Current Process Model for the Two
 Machine Types IM and PMSM 92
 3.6 Nonlinear Properties of the Machine Models and the
 Way to Nonlinear Controllers 95
 3.6.1 Idea of the Exact Linearization Using
 State Coordinate Transformation 95
 3.6.2 Flatness and the Idea of the Flatness-Based
 Control Design 102
References .. 112
4 Problems of Actual-Value Measurement
and Vector Orientation ... 113
 4.1 Acquisition of the Current .. 113
 4.2 Acquisition of the Speed 116
 4.3 Possibilities for Sensor-Less Acquisition of the Speed 122
 4.3.1 Example for the Speed Sensor-Less Control of an IM Drive 123
 4.3.2 Example for the Speed Sensor-Less Control of a PMSM Drive ... 131
 4.4 Field Orientation and Its Problems 132
 4.4.1 Principle and Rotor Flux Estimation for IM Drives 133
 4.4.2 Calculation of Current Set Points 138
 4.4.3 Problems of the Sampling Operation of the Control System ... 139
References .. 144

Part II Three-Phase AC Drives with IM and PMSM

5 Dynamic Current Feedback Control for Fast Torque Impression in Drive Systems ... 149
 5.1 Survey About Existing Current Control Methods 150
 5.2 Environmental Conditions, Closed Loop Transfer Function and Control Approach 160
 5.3 Design of a Current Vector Controller with Dead-Beat Behaviour .. 164
 5.3.1 Design of a Current Vector Controller with Dead-Beat Behaviour with Instantaneous Value Measurement of the Current Actual-Values .. 164
 5.3.2 Design of a Current Vector Controller with Dead-Beat Behaviour for Integrating Measurement of the Current Actual-Values 169
 5.3.3 Design of a Current Vector Controller with Finite Adjustment Time .. 171
 5.4 Design of a Current State Space Controller with Dead-Beat Behaviour ... 172
 5.4.1 Feedback Matrix K ... 173
 5.4.2 Pre-filter Matrix V ... 174
5.5 Treatment of the Limitation of Control Variables
- 5.5.1 Splitting Strategy at Voltage Limitation
- 5.5.2 Correction Strategy at Voltage Limitation

References

6 Equivalent Circuits and Methods to Determine the System Parameters
6.1 Equivalent Circuits with Constant Parameters
- 6.1.1 Equivalent Circuits of the IM
- 6.1.2 Equivalent Circuits of the PMSM
6.2 Modelling of the Nonlinearities of the IM
- 6.2.1 Iron Losses
- 6.2.2 Current and Field Displacement
- 6.2.3 Magnetic Saturation
- 6.2.4 Transient Parameters
6.3 Parameter Estimation from Name Plate Data
- 6.3.1 Calculation for IM with Power Factor $\cos \phi$
- 6.3.2 Calculation for IM Without Power Factor $\cos \phi$
- 6.3.3 Parameter Estimation from Name Plate of PMSM
6.4 Automatic Parameter Estimation for IM in Standstill
- 6.4.1 Pre-considerations
- 6.4.2 Current-Voltage Characteristics of the Inverter, Stator Resistance and Transient Leakage Inductance
- 6.4.3 Identification of Inductances and Rotor Resistance with Frequency Response Methods
- 6.4.4 Identification of the Stator Inductance with Direct Current Excitation

References

7 On-Line Adaptation of the Rotor Time Constant for IM Drives
7.1 Motivation
7.2 Classification of Adaptation Methods
7.3 Adaptation of the Rotor Resistance with Model Methods
- 7.3.1 Observer Approach and System Dynamics
- 7.3.2 Fault Models
- 7.3.3 Parameter Sensitivity
- 7.3.4 Influence of the Iron Losses
- 7.3.5 Adaptation in the Stationary and Dynamic Operation

References
8 Optimal Control of State Variables and Set Points for IM Drives ... 257
 8.1 Objective ... 257
 8.2 Efficiency Optimized Control 258
 8.3 Stationary Torque Optimal Set Point Generation 261
 8.3.1 Basic Speed Range 261
 8.3.2 Upper Field Weakening Area 265
 8.3.3 Lower Field Weakening Area 268
 8.3.4 Common Quasi-stationary Control Strategy 271
 8.3.5 Torque Dynamics at Voltage Limitation 273
 8.4 Comparison of the Optimization Strategies 277
 8.5 Rotor Flux Feedback Control 280
References .. 282

9 Nonlinear Control Structures for Three-Phase AC Drive Systems ... 283
 9.1 Existing Problems at Linear Controlled Drive Systems 283
 9.2 Nonlinear Control Structures for Drive Systems
 with IM .. 284
 9.2.1 Nonlinear Control Based on Exact
 Linearization of IM ... 284
 9.2.2 Nonlinear Control Based on Flatness of IM 289
 9.3 Nonlinear Control Structure for Drive Systems
 with PMSM ... 298
 9.3.1 Nonlinear Control Based on Exact
 Linearization of PMSM 298
 9.3.2 Nonlinear Control Based on Flatness
 of PMSM .. 303
References .. 309

Part III Wind Power Plants with DFIM

10 Linear Control Structure for Wind Power Plants with DFIM 313
 10.1 Construction of Wind Power Plants with DFIM 313
 10.2 Grid Voltage Orientated Controlled Systems 315
 10.2.1 Control Variables for Active and Reactive Power ... 316
 10.2.2 Dynamic Rotor Current Control for Decoupling
 of Active and Reactive Power 317
 10.2.3 Problems of the Implementation 319
 10.3 Front-End Converter Current Control 321
 10.3.1 Process Model .. 322
 10.3.2 Controller Design 324
References .. 326
11 Nonlinear Control Structure for Wind Power Plants with DFIM ... 327
 11.1 Existing Problems with Linear Controlled Wind Power Plants .. 327
 11.2 Nonlinear Control Based on Exact Linearization of DFIM .. 328
 11.2.1 Controller Design 328
 11.2.2 Control Structure with Direct Decoupling for DFIM 331
 11.3 Nonlinear Control Based on Flatness of DFIM .. 335
 11.3.1 Controller Design 335
 11.3.2 Flatness-Based Control Structure for DFIM 338
References .. 342

Appendix .. 345

Index .. 361
Vector Control of Three-Phase AC Machines
System Development in the Practice
Quang, N.P.; Dittrich, J.-A.
2015, XIX, 364 p. 194 illus., 193 illus. in color., Hardcover
ISBN: 978-3-662-46914-9