Contents

1 Chemical Synthesis of Proposed RM2 and Derivatives 1
 1.1 Introduction ... 1
 1.1.1 Glycosphingolipids .. 1
 1.1.2 Tumor-Associated Carbohydrate Antigens 4
 1.1.3 RM2 Antigen ($\beta_1,4$GalNAc-Disialyl-Lc4) as a New Marker for Prostate Cancer 4
 1.2 Chemical Synthesis of Hexasaccharide RM2 and Its Derivatives 5
 1.2.1 Design of Sugar Building Blocks 5
 1.2.2 Syntheses of Sialyated Trisaccharide Building Block 1-D 8
 1.2.3 Synthesis of Galactose Building Block 1-5. 9
 1.2.4 Synthesis of Sialylated Trisaccharide Building Block 1-2 10
 1.2.5 Synthesis of GlcNAc Building Block 1-12 12
 1.2.6 Synthesis of Trisaccharide 1-2 12
 1.2.7 Synthesis of Disaccharide 1-17 15
 1.2.8 Examine Synthesis of Hexasaccharide 16
 1.2.9 Hexasaccharide RM2 Antigen: Investigate Sial$\alpha_2 \rightarrow$3Gal Disaccharide with High α-Stereoselectivity and Yield 17
 1.2.10 Syntheses of Truncated RM2 Derivatives 1-44, 1-46, 1-48, and 1-50 23
 1.3 Summary ... 24
 1.3.1 Experimental Section .. 24
References ... 53
RM2 Antigen: Structural Characterization and Determination of $K_{D,\text{Surf}}$ for Multivalent Carbohydrate–Protein Interaction

2.1 Introduction

2.1.1 A Novel Ganglioside (RM2) Isolated from Renal Cell Carcinoma.

2.2 Characterize the Structure of RM2 Antigen by Monoclonal RM2 Antibody and Further Determine the $K_{D,\text{Surf}}$ by Carbohydrate–Protein Interaction

2.2.1 Structural Characterization of RM2 Antigen.

2.2.2 Determination of $K_{D,\text{Surf}}$ for Multivalent Carbohydrate–Protein Interaction on the Surface.

2.3 Summary

2.4 Experimental Section

References

RM2 Antigen: Synthesis of Glycoconjugates

3.1 Introduction

3.1.1 Carbohydrate-Based Vaccines.

3.1.2 Applications of Glycolipids as Immunological Adjuvants.

3.2 Generation and Characterization of RM2 Glycoconjugate

3.2.1 Synthesis of DT-RM 4.7 as a Vaccine Candidate with Glycolipid C34 as a Potent Adjuvant.

3.2.2 Search for the Best Epitope Ratio of DT-RM Vaccine Adjuvanted with C34.

3.2.3 Synthesis of RM2 Conjugated with Different Carrier Proteins.

3.3 Summary

3.4 Experimental Section

References

Synthesis of Heptasaccharide RM2 Prostate Tumor Antigen: Chemical Synthesis of Heptasaccharide and Tetrasaccharide (Inner Core of the RM2 Antigen)

4.1 Introduction

4.1.1 Heptasaccharide Form and Hexasaccharide Form of RM2 Antigen.

4.2 Chemical Synthesis of Proposed Heptasaccharide

4.2.1 Chemical Synthesis of Heptasaccharide 3-5 and Tetrasaccharide 3-6.

4.2.2 Synthesis of Galactose Building Block 4-4.

4.2.3 Synthesis of Disaccharide Building Block 4-9.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4 Synthesis of Sialylated Tetrasaccharide Building Block 4-2</td>
<td>99</td>
</tr>
<tr>
<td>4.2.5 Synthesis of Compound 4-2</td>
<td>101</td>
</tr>
<tr>
<td>4.3 Summary</td>
<td>102</td>
</tr>
<tr>
<td>4.4 Experimental Section</td>
<td>102</td>
</tr>
<tr>
<td>References</td>
<td>108</td>
</tr>
</tbody>
</table>
Synthesis and Vaccine Evaluation of the Tumor Associated Carbohydrate Antigen RM2 from Prostate Cancer
Chuang, H.-Y.
2015, XIII, 108 p. 67 illus., 26 illus. in color., Hardcover
ISBN: 978-3-662-46847-0