Chapter 2
Local Diffusion

2.1 Introduction

Trapped particles exhibit three periodic motions (see Sect. 1.3.1), and consequently possess three adiabatic invariants. Radiation belt electrons can cyclotron resonate with some magnetospheric plasma waves (violating the first and second adiabatic invariants), and then experience the significant acceleration or loss process (Horne and Thorne 1998, 2003; Summers et al. 1998; Roth et al. 1999; Summers and Ma 2000; Albert 2002, 2003, 2004, 2005; Horne et al. 2003a, b, 2005; O’Brien et al. 2003; Albert and Young 2005; Li et al. 2005; Varotsou et al. 2005, 2008; Shprits et al. 2006, 2009b; Xiao and He 2006; Xiao et al. 2007a, b, 2009, 2010a, b; Li et al. 2007; Su and Zheng 2008, 2009; Zheng et al. 2008; Albert and Bortnik 2009; Albert et al. 2009; Su et al. 2009a, c, 2010a, c, 2011a, b, c; Thorne 2010). Such cyclotron resonance driven by various waves is widely believed to control the radiation belt electron dynamics.

The whistler-mode chorus waves are usually distributed in the low-density plasma-trough region approximately from midnight through dawn to noon with frequencies $0.05 - 0.8 |\Omega_e|$ ($|\Omega_e|$ is the equatorial electron gyro-frequency) (Tsurutani and Smith 1974, 1977; Koons and Roeder 1990; Meredith et al. 2001; Santolik et al. 2003, 2004). Typical chorus amplitudes are found to be 1–100 pT (Burtis and Helliswell 1975; Meredith et al. 2001, 2003), and even approach 1–3 nT during geomagnetically active periods (Parrot and Gaye 1994; Cattell et al. 2008; Cully et al. 2008). The chorus waves are widely considered to cause the significant acceleration of radiation belt electrons on a timescale of days (e.g., Horne and Thorne 1998; Summers et al. 1998; Horne and Thorne 2003).

The whistler-mode hiss waves mainly occur in the high-density plasmasphere and plasmaspheric plume (Russell et al. 1969; Thorne et al. 1973; Li et al. 2007; Bortnik et al. 2008b, 2009). Their frequencies range from ~ 100 Hz to several kHz, with amplitudes 10 pT during the quiet times and ~ 100 pT during the storm times (Smith et al. 1974; Meredith et al. 2004; Summers et al. 2008). The hiss waves can
scatter the energetic electrons into the loss cone and result in their slow decay on a timescale of several days (Lyons and Thorne 1973; Meredith et al. 2007; Su et al. 2010a, 2011a, b, c).

The electromagnetic ion cyclotron (EMIC) waves with typical frequencies 0.1–5.0 Hz are observed in the plasmasphere along the duskside plasmapause or plasmaspheric plumes (Fraser et al. 1996). EMIC emissions typically split into three distinct bands below the hydrogen (H\(^+\)), helium (He\(^+\)), and oxygen (O\(^+\)) ion gyrofrequencies in a multi-ion (H\(^+\), He\(^+\), O\(^+\)) plasma. The EMIC waves can efficiently cause the precipitation loss of relativistic electrons on a timescale of hours (Summers et al. 2007a, b).

The quasilinear diffusion theory is widely used to describe the electron PSD evolution due to resonance with waves (e.g., Kennel and Engelmann 1966; Schulz and Lanzerotti 1974; Beutier et al. 1995; Bourdarie et al. 1997; Albert and Young 2005; Xiao et al. 2009; Su et al. 2010a, 2011b). The detailed expressions for the relativistic quasilinear diffusion have been given by Albert (2003, 2005), Glauert and Horne (2005), and their corresponding parallel propagation approximation (PPA) and mean value approximation (MVA) have been proposed by Summers (2005) and Albert (2008). In this chapter, we develop a local diffusion model for radiation belt electron evolution due to cyclotron resonance with various plasma waves. Using this numerical model, we examine the effect of chorus, hiss, and EMIC waves on the radiation belt electrons. Furthermore, in view of ignoring of cross-pitch-angle-momentum diffusion in the previous models, we here evaluate the importance of cross term in the simulations.

2.2 Local Radiation Belt Diffusion Model

2.2.1 Background Magnetic Field

Similar to previous works (e.g., Albert 2003, 2005, 2008; Horne et al. 2003a, 2005; Glauert and Horne 2005; Summers 2005), a typical dipole magnetic field model is used to describe the inner magnetospheric field configuration. It should be mentioned that, during geomagnetic storms, the diffusion coefficients in the different geomagnetic field models may have quantitative differences (Orlova and Shprits 2010).

2.2.2 Basic Equation

The Jacobian matrix between the action space \((J_1, J_2, J_3)\) and observable space \((\alpha_e, p, L)\) can be written as
\[\mathcal{J}_f \propto \left| \begin{array}{cccc} \partial \mu / \partial \alpha_e & \partial \mu / \partial p & \partial \mu / \partial L \\ \partial J / \partial \alpha_e & \partial J / \partial p & \partial J / \partial L \\ 0 & 0 & d\Phi / dL \end{array} \right| \]

\[\propto \frac{d\Phi}{dL} \left(\frac{\partial \mu}{\partial \alpha_e} \frac{\partial J}{\partial p} - \frac{\partial \mu}{\partial p} \frac{\partial J}{\partial \alpha_e} \right) \]

\[\propto Lp^2 \sin \alpha_e \cos \alpha_e \left(I - \frac{\sin \alpha_e}{\cos \alpha_e} \frac{\partial I}{\partial \alpha_e} \right). \tag{2.1} \]

From Eq. (1.17), we can obtain

\[\frac{\partial I}{\partial \alpha_e} = -\int_{s_m'}^{s_m} \sin \alpha \frac{\partial \alpha}{\partial \alpha_e} ds + \cos \alpha \frac{\partial s_m}{\partial \alpha_e} - \cos \alpha \frac{\partial s'_m}{\partial \alpha_e}. \tag{2.2} \]

Because of \(\alpha(s_m) = \alpha(s'_m) = 90^\circ \), the equation above is simplified as

\[\frac{\partial I}{\partial \alpha_e} = -\int_{s_m'}^{s_m} \sin \alpha \frac{\partial \alpha}{\partial \alpha_e} ds. \tag{2.3} \]

Considering the conservation of first adiabatic invariant in the course of bounce motion

\[\frac{\sin^2 \alpha}{B} = \frac{\sin^2 \alpha_e}{B_e}, \tag{2.4} \]

we can derive

\[\frac{\partial \alpha}{\partial \alpha_e} = \frac{\tan \alpha}{\tan \alpha_e}. \tag{2.5} \]

Substitution of (2.5) into (2.3) yields

\[I - \frac{\sin \alpha_e}{\cos \alpha_e} \frac{\partial I}{\partial \alpha_e} = \int_{s_m'}^{s_m} \cos \alpha ds + \int_{s_m'}^{s_m} \frac{\sin^2 \alpha}{\cos \alpha} ds = \int_{s_m'}^{s_m} \frac{1}{\cos \alpha} ds. \tag{2.6} \]

We further substitute (2.6), (1.12) and (1.14) into (2.1), and obtain the simplified Jacobian matrix

\[\mathcal{J} \propto L^2 G, \tag{2.7} \]

\[G = p^2 T(\alpha_e) \sin \alpha_e \cos \alpha_e. \tag{2.8} \]
The cyclotron resonance between radiation belt electrons and various plasma waves is a “local” physical process violating the first and second adiabatic invariants (Schulz and Lanzerotti 1974; Shprits et al. 2008a, b). Substitution of the Jacobian matrix (2.7) into (1.35) yields the quasilinear diffusion equation for electron PSD evolution (Schulz and Lanzerotti 1974; Lyons and Williams 1984; Kozyra et al. 1994)

\[
\frac{\partial f}{\partial t} = \frac{1}{G p} \frac{\partial}{\partial \alpha_e} \left[G \left(\langle D_{\alpha \alpha} \rangle \frac{1}{p} \frac{\partial f}{\partial \alpha_e} + \langle D_{\alpha p} \rangle \frac{\partial f}{\partial p} \right) \right] \\
+ \frac{1}{G} \frac{\partial}{\partial p} \left[G \left(\langle D_{p \alpha} \rangle \frac{1}{p} \frac{\partial f}{\partial \alpha_e} + \langle D_{p p} \rangle \frac{\partial f}{\partial p} \right) \right]
\]

(2.9)

with the bounce-averaged pitch-angle, momentum, and cross diffusion coefficients (Lyons and Williams 1984; Glauert and Horne 2005)

\[
\langle D_{\alpha \alpha} \rangle = \frac{p^2}{2} \left(\frac{(\Delta \alpha_e)^2}{\Delta t} \right),
\]

(2.10)

\[
\langle D_{\alpha p} \rangle = \frac{p}{2} \left(\frac{\Delta \alpha_e \Delta p}{\Delta t} \right),
\]

(2.11)

\[
\langle D_{p p} \rangle = \frac{1}{2} \left(\frac{(\Delta p)^2}{\Delta t} \right).
\]

(2.12)

2.2.3 Diffusion Coefficients

The bounce-averaged diffusion coefficients \(\langle D_{\alpha \alpha} \rangle\), \(\langle D_{p p} \rangle\) and \(\langle D_{\alpha p} \rangle = \langle D_{p \alpha} \rangle\) can be obtained through integration of local diffusion coefficients \(D_{\alpha \alpha}\), \(D_{p p}\) and \(D_{\alpha p} = D_{p \alpha}\) along the geomagnetic field line. In the dipole magnetic field, their expressions can be written as (Lyons and Williams 1984)

\[
\langle D_{\alpha \alpha} \rangle = \frac{1}{T} \int_0^{\lambda_m} D_{\alpha \alpha} \frac{\cos \alpha}{\cos^2 \alpha_e} \cos^7 \lambda d\lambda,
\]

(2.13)

\[
\langle D_{p p} \rangle = \frac{1}{T} \int_0^{\lambda_m} D_{p p} \frac{(1 + 3 \sin^2 \lambda)^{1/2}}{\cos \alpha} \cos \lambda d\lambda,
\]

(2.14)

\[
\langle D_{\alpha p} \rangle = \langle D_{p \alpha} \rangle = \frac{1}{T} \int_0^{\lambda_m} D_{\alpha p} \frac{(1 + 3 \sin^2 \lambda)^{1/4}}{\cos \alpha_e} \cos^4 \lambda d\lambda,
\]

(2.15)

with the latitude \(\lambda\) and the mirror latitude \(\lambda_m\) corresponding to the equatorial pitch-angle \(\alpha_e\). Based on the conservation of first adiabatic invariant and the expression of dipole magnetic field, we can obtain the relation between \(\alpha_e\) and \(\lambda_m\)
The calculation of local diffusion coefficients is implemented through three steps:

1. Determination of wave spectral distribution. The wave frequency ω is usually assumed to obey the typical Gaussian distribution (e.g., Albert 2003, 2005; Summers 2005; Glauert and Horne 2005)

$$B^2_\omega = \begin{cases}
A^2 \exp\left[-(\omega - \omega_m)^2/(\delta \omega)^2\right], & \omega_1 \leq \omega \leq \omega_2, \\
0, & \text{other}
\end{cases},$$

$$A^2 = \frac{2 B_t^2}{\pi^{1/2} \delta \omega} \left[\text{erf}\left(\frac{\omega_2 - \omega_m}{\delta \omega}\right) + \text{erf}\left(\frac{\omega_m - \omega_1}{\delta \omega}\right)\right]^{-1},$$

with the lower limit ω_1, upper limit ω_2, center ω_m, half-width $\delta \omega$, and amplitude B_t. The tangent X of wave normal angle θ is also assumed to obey the typical Gaussian distribution (e.g., Albert 2003, 2005; Summers 2005; Glauert and Horne 2005)

$$g(X) = \begin{cases}
\exp[-(X - X_m)^2/X^2_\omega], & X_1 \leq X \leq X_2, \\
0, & \text{other}
\end{cases},$$

with the lower limit X_1, upper limit X_2, center X_m and half-width X_ω. When $X_m = X_\omega = 0$, the waves propagate fully parallel along the magnetic field lines.

2. Calculation of resonance roots. The resonance frequency ω and wave vector k satisfy the dispersion relation (Stix 1992) and the n-order cyclotron resonance condition

$$\omega - \nu_{||} k_{||} = -n |\Omega_e|/\gamma,$$

where $\nu_{||} = \nu \cos \alpha$ and $k_{||} = k \cos \theta$ represent the parallel component of electron velocity and wave vector with respect to the background magnetic field. Under high-density approximation (i.e., the ratio of electron plasma frequency ω_{pe} to electron gyrofrequency $|\Omega_e|$ is much larger than 1), the dispersion relation of whistler-mode chorus wave in the electron-proton plasma can be simplified as (Lyons 1974c)

$$V^2 = \left(\frac{c k}{\omega}\right)^2 = \frac{\omega^2_{pe}}{|\Omega_e|^2} \frac{1 + M}{M} \Psi^{-1},$$

$$\Psi = 1 - \frac{\omega^2}{\Omega_p |\Omega_e|} - \frac{\sin^2 \theta}{2} + \left[\frac{\sin^4 \theta}{4} + \frac{\omega^2}{\Omega_p^2} (1 - M)^2 \cos^2 \theta \right]^{1/2},$$
with the ratio of electron and proton masses $M = m_e/m_p = 1/1836$ and the proton gyrofrequency Ω_p. In a multi-component plasma (e\(^{-}\), H\(^{+}\), He\(^{+}\), O\(^{+}\)), the dispersion relation of parallel-propagation EMIC waves is (Summers and Thorne 2003)

$$\frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_{pe}^2}{\omega(\omega + |\Omega_e|)} - \sum_{j=1}^{3} \frac{\omega_{pj}^2}{\omega(\omega - \Omega_j)} ,$$

(2.24)

where $\Omega_j |_{j=1,2,3}$ represent the gyro-frequencies of H\(^{+}\), He\(^{+}\) and O\(^{+}\), and ω_{pj} denote the jth ion plasma frequency.

$$\begin{pmatrix} D_{aa} & D_{ap} \\ D_{pa} & D_{pp} \end{pmatrix} = \left(\frac{\tilde{D}_{aa} \tilde{D}_{ap}}{\tilde{D}_{pa} \tilde{D}_{pp}} \right) \frac{B^2_\omega B^2_v}{B^2_v \gamma^2} ,$$

(2.25)

$$\begin{pmatrix} \tilde{D}_{aa} & \tilde{D}_{ap} \\ \tilde{D}_{pa} & \tilde{D}_{pp} \end{pmatrix} = \sum_{n=n_1}^{n_2} \int X dX \begin{pmatrix} \tilde{D}_{aa} & \tilde{D}_{ap} \\ \tilde{D}_{pa} & \tilde{D}_{pp} \end{pmatrix} ,$$

(2.26)

$$\tilde{D}_{aa} = \sum_i \frac{\omega^2 (\sin^2 \alpha + n|\Omega_e|/\gamma \omega)^2}{4\pi v_\parallel^2 (1 + X^2) N(\omega)} \frac{g(X)|\Phi_{n,k}|^2}{|v_\parallel - \partial \omega/\partial k||X|} \bigg|_{\omega=\omega_i \atop k=k_i} ,$$

(2.27)

$$N(\omega) = \frac{1}{2\pi^2} \int_0^\infty g(X) J \left(\frac{k_\perp, k_\parallel}{\omega, X} \right) |k_\perp| \, dX ,$$

(2.28)

$$J \left(\frac{k_\perp, k_\parallel}{\omega, X} \right) = -k_\parallel \frac{\partial k_\parallel}{\partial \omega} X = -k \cos^2 \theta \frac{\partial k}{\partial \omega} X ,$$

(2.29)

$$|\Phi_{n,k}|^2 = \left[\left(\frac{2D}{V^2 - S} \right)^2 + \left(\frac{2P \cos \theta}{V^2 \sin^2 \theta - P} \right) \right]^{-1} \times \left[\left(\frac{V^2 - L}{V^2 - S} \right)^2 J_n + \left(\frac{V^2 - R}{V^2 - S} \right)^2 J_{n-1} + \frac{V^2 \cot \alpha \sin 2\theta}{V^2 \sin^2 \theta - P} J_n \right]^2 ,$$

(2.30)

$$R = \frac{\omega_{pe}^2 |\Omega_e|}{\omega} \left[\frac{1 + M}{1 - M - (\omega/|\Omega_e| - \Omega_p/\omega)} \right] ,$$

(2.31)
\[L = - \frac{\omega_{pe}^2}{|\Omega_e|^2} \frac{1 + M}{\omega} \left[\frac{1}{1 - M + (\omega/|\Omega_e| - \Omega_p/\omega)} \right], \]
\[(2.32) \]

\[P = - \frac{\omega_{pe}^2}{|\Omega_e|^2} \frac{|\Omega_e|^2}{\omega^2} (1 + M), \]
\[(2.33) \]

\[S = \frac{R + L}{2}, \]
\[(2.34) \]

\[D = \frac{R - L}{2}, \]
\[(2.35) \]

\[\tilde{D}_{\alpha\varphi}^{nX} = \tilde{D}_{\varphi\alpha}^{nX} = \tilde{D}_{\varphi\varphi}^{nX} \left[\frac{\sin \alpha \cos \alpha}{- \sin^2 \alpha - n|\Omega_e|/\gamma \omega} \right]_{\omega = \omega_i k = k_i}, \]
\[(2.36) \]

\[\tilde{D}_{\varphi\varphi}^{nX} = \tilde{D}_{\alpha\alpha}^{nX} \left[\frac{\sin \alpha \cos \alpha}{- \sin^2 \alpha - n|\Omega_e|/\gamma \omega} \right]^2_{\omega = \omega_i k = k_i}. \]
\[(2.37) \]

Here \(n_1 \) and \(n_2 \) are the upper and lower limits of resonance orders; \(\omega_i \) and \(k_i \) are the \(i \)-th resonant frequency and wave number, the subscripts \(\perp \) and \(\parallel \) represent the parallel and perpendicular components with respect to the background magnetic field; the argument of \(n \)-order Bessel function is \(-k_p \perp /(|\Omega_e|)/(me \gamma)\). Based on the work of Kennel and Engelmann (1966), Summers (2005) and Tao et al. (2011a) had presented the expressions of relativistic diffusion coefficients for the parallel propagation plasma waves

\[D_{\alpha\alpha} = |\Omega_e|^2 \left(\frac{\beta_e^2}{\gamma^2} I_0 - 2 \cos \alpha \frac{m_e c p}{\gamma} I_1 + \cos^2 \alpha m_e^2 c^2 I_2 \right), \]
\[(2.38) \]

\[D_{pp} = m_e^2 c^2 |\Omega_e|^2 \sin^2 \alpha I_2, \]
\[(2.39) \]

\[D_{ap} = D_{pa} = -m_e c p |\Omega_e|^2 \sin \alpha \left(\frac{I_1}{\gamma} - \frac{m_e c \cos \alpha}{p} I_2 \right), \]
\[(2.40) \]

\[I_s = \frac{\pi}{4} \sum_i \left[\frac{B^2 \omega^2}{B^2 c k} \left(\frac{\omega}{\gamma m_e} \frac{dk}{d\omega} \right)^{-1} \right]_{\omega = \omega_i, k = k_i}, \]
\[s = 0, 1, 2. \]
\[(2.41) \]

2.2.4 Numerical Method

The quasilinear diffusion equation includes three parts: pitch-angle diffusion, momentum diffusion, and cross diffusion. Utilizing the standard finite difference methods to this equation often leads to the numerical instability associated with the cross
diffusion (Albert 2004; Albert and Young 2005). Albert and Young (2005) proposed a variable transformation method to diagonalize the diffusion matrix. In this special variable space, cross diffusion is removed and the typical implicit method can be directly used to solve the equation. Obviously, such transformation depends on the diffusion coefficients, and the different diffusion coefficients would require different transformation variables. Tao et al. (2008, 2009) adopted a Monte Carlo method or a layer method to solve this equation. But these methods are inefficient compared to the direct difference method. We have developed a Hybrid Finite Difference Method (Xiao et al. 2009; Su et al. 2009c, 2011c) to fully solve this quasilinear diffusion Eq. (2.9).

The diffusion Eq. (2.9) is rewritten as

\[
\frac{\partial f}{\partial t} = \frac{1}{Gp} \frac{\partial}{\partial \alpha_e} \left(\frac{G \langle D_{aa} \rangle}{p} \frac{\partial f}{\partial \alpha_e} \right) + \frac{1}{Gp} \frac{\partial}{\partial \xi} \left(\frac{G \langle D_{pp} \rangle}{p} \frac{\partial f}{\partial \xi} \right) + \frac{2 \langle D_{ap} \rangle}{p^2} \frac{\partial^2 f}{\partial \alpha_e \partial \xi},
\]

(2.42)

with the variable \(\xi \) defined as \(\xi = \ln \frac{p}{m_0 c} \). Based on the split-operator technique (Strang 1968; Kim et al. 1999), the equation above is split into

\[
\frac{\partial f}{\partial t} = \frac{1}{Gp} \frac{\partial}{\partial \alpha_e} \left(\frac{G \langle D_{aa} \rangle}{p} \frac{\partial f}{\partial \alpha_e} \right),
\]

(2.43)

\[
\frac{\partial f}{\partial t} = \frac{1}{Gp} \frac{\partial}{\partial \xi} \left(\frac{G \langle D_{pp} \rangle}{p} \frac{\partial f}{\partial \xi} \right),
\]

(2.44)

\[
\frac{\partial f}{\partial t} = \frac{1}{Gp} \frac{\partial}{\partial \alpha_e} \left(\frac{G \langle D_{ap} \rangle}{p} \frac{\partial f}{\partial \alpha_e} \right) + \frac{1}{Gp} \frac{\partial}{\partial \alpha_e} \left(\frac{G \langle D_{ap} \rangle}{p} \frac{\partial f}{\partial \alpha_e} \right) + \frac{2 \langle D_{ap} \rangle}{p^2} \frac{\partial^2 f}{\partial \alpha_e \partial \xi}.
\]

(2.45)

At each time-step, the solving of Eq. (2.42) can be implemented by the successive solving of Eqs. (2.43–2.45). The diagonal Eqs. (2.43) and (2.44) are solved by the fully-implicit method, while the off-diagonal Eq. (2.45) is solved by the alternative direction implicit (ADI) method (Strang 1968). The whole numerical algorithm is named as the Hybrid Finite Difference Method (HFD) due to the combination of two different finite difference methods. In the quasilinear dynamic simulations of radiation belt, ring current and aurora, this HFD method has been widely used by our group (Su et al. 2009a, b, c, 2010a, b, c, 2011a, b, c; Xiao et al. 2009, 2010a, b, 2011) and other researchers (Fok et al. 2010; Thorne et al. 2010; Tao et al. 2011b; Zheng et al. 2011).
2.3 Idealized Simulations

Because of the numerical difficulty associated with cross diffusion, the previous work often ignore the cross diffusion terms (e.g., Varotsou et al. 2005, 2008; Li et al. 2007). In this section, we calculate the diffusion coefficients of chorus, hiss, and EMIC waves, and then fully solve the diffusion equation to quantify the effect of various waves on radiation belt electrons. In addition, through comparison between simulations with and without cross terms, we attempt to evaluate the importance of cross diffusion.

We concentrate on the local acceleration and loss processes in the center ($L = 4.5$) of the outer radiation belt. The computational range covers $\alpha_e \in [0^\circ, 90^\circ]$ and $E_k \in [0.2 \text{ MeV}, 10.0 \text{ MeV}]$. The uniform grids are adopted in the (α_e, ξ) space with grid numbers 91×81. The time-step is set to be $\Delta t = 1 \text{ s}$. It should be noted that only the electron fluxes in the energy range $E_k \in [0.2 \text{ MeV}, 5.0 \text{ MeV}]$ are plotted to clearly identify the $\sim \text{MeV}$ electron evolution.

The initial electron PSD is assumed to obey the Kappa-type distribution (Vasyliunas 1968; Maksimovic et al. 1997a, b; Viñas et al. 2005; Xiao 2006; Xiao et al. 2008a, b, c)

$$f(t = 0, \alpha_e, p) = C \left(\frac{p \sin \alpha_e}{\theta^2} \right)^{2l} \left[1 + \frac{p^2}{\kappa \theta^2} \right]^{-(\kappa + l + 1)} , \quad (2.46)$$

$$C = \frac{N \Gamma(\kappa + l + 1)}{\pi^{3/2} \theta^2 \kappa^{3/2} l(l+3/2) \Gamma(l+1) \Gamma(\kappa - 1/2)} , \quad (2.47)$$

with the loss cone parameter l, effective thermal parameter θ^2 electron density N, spectral index κ, and Gamma function Γ. Here these parameters are empirically chosen to be $\theta^2 = 0.15$, $l = 0.5$ and $\kappa = 6$ (Xiao et al. 2009).

At the loss cone boundary $\alpha_e = \alpha_L$, the electron PSD is set to be zero. At $\alpha_e = 90^\circ$, the equivalent extrapolation boundary condition is adopted. At the upper and lower energy boundaries, the electron PSDs are fixed.

2.3.1 Chorus

Based on the previous works (Meredith et al. 2001, 2002, 2003; Horne et al. 2005; Li et al. 2007), we choose different parameters for nightside and dayside chorus waves and the corresponding background plasma. We assume the constant electron density along the geomagnetic field lines. The equatorial ratio between electron plasma frequency ω_{pe} and gyrofrequency $|\Omega_e|$ is set to be 3.8 in the nightside and 4.6 in the dayside. At the nightside, the chorus waves are distributed over the latitudinal region $|\lambda| < 15^\circ$ with the spectral parameters $B_i = 50 \text{ pT}$, $\omega_1 = 0.05|\Omega_e|$, $\omega_2 = 0.65|\Omega_e|$, $\omega_0 = 0.15|\Omega_e|$, $\omega_m = 0.35|\Omega_e|$, $X_m = 0$, $X_{\omega} = 0.577$, $X_1 = 0$ and
$X_2 = 1$. At the dayside, the chorus waves are distributed in the latitudinal region $\lambda \leq 35^\circ$ with the spectral parameters $B_t = 10^{0.75+0.04\lambda}$ pT, $\omega_1 = 0.1|\Omega_e|$, $\omega_2 = 0.3|\Omega_e|$, $\delta\omega = 0.1|\Omega_e|$, $\omega_m = 0.2|\Omega_e|$, $X_m = 0$, $X_0 = 0.577$, $X_1 = 0$ and $X_2 = 1$. On both sides, the resonance orders $n = 0$, ± 1, \ldots, ± 5 are taken into account. It should be noted that these parameters have been frequently used to simulate the chorus-driven radiation belt electron evolution during storms (e.g., Li et al. 2007; Shprits et al. 2009a, b; Subbotin et al. 2010; Su et al. 2009a, 2011a, b, c, 2010a, c; Xiao et al. 2009, 2010b).

Figure 2.1 shows the two-dimensional distribution of diffusion rates for the nightside and dayside chorus waves in the (α_e, E_k) space, and Fig. 2.2 plots the diffusion coefficient profiles at the selected energies. Obviously, the pitch-angle and momentum diffusion rates behave smoothly, but the cross diffusion rates exhibit rapid and significant fluctuations which can easily lead to numerical instability (Albert 2004; Albert and Young 2005). The maximum values of pitch-angle diffusion rates are about 10 times larger than those of momentum diffusion rates, and the maximum values of momentum and cross diffusion rates are generally comparable (implying that the ignoring of cross diffusion rates is unreasonable). The diffusion rates for nightside and dayside chorus waves have quite different distributions. The diffusion rates of nightside chorus waves peak at the large equatorial pitch-angles (near $\alpha_e = 90^\circ$). In contrast, the diffusion rates of dayside chorus waves peak at the small equatorial pitch-angles (near $\alpha_e = \alpha_L$).

The energetic electrons drift around the Earth on closed paths, quasi-periodically passing through the spatial regions with different types of waves. We assume that the nightside and dayside chorus waves are distributed 25% of drift paths, respectively. The drift-averaged diffusion coefficients are input into Eq. (2.9) to simulate the evolution of electron PSD f and flux $j = p^2 f$. Figures 2.3 and 2.4 present the electron flux evolution with and without cross diffusion. As shown in the simulations with cross diffusion, the chorus waves can effectively accelerate the electrons and enhance significantly the energetic electron fluxes especially at the large equatorial pitch-angles ($\alpha_e > 45^\circ$). Within two days, the equatorially-trapped electron fluxes at energies $E_k = 0.5$, 1.0 and 2.0 MeV can increase by about 3, 30, and 60 times, respectively. The ignoring of cross diffusion can largely overestimate the acceleration effect of chorus waves. After two days, the equatorially-trapped electron fluxes at energies $E_k = 0.5$, 1.0, and 2.0 MeV are overestimated by about 3, 6, and 5 times at the large pitch-angles, and by about 10, 50, and 200 times at the small pitch-angles, respectively. These results suggest that cross diffusion plays an important role in chorus-electron cyclotron resonance.

2.3.2 Hiss

We assume constant electron density along the magnetic field line, and set the equatorial $\omega_{pe}/|\Omega_e| = 15$ (Li et al. 2007). The hiss waves are distributed in the latitudinal region $\lambda < 40^\circ$ with spectral properties $B_t = 0.1$ nT, $\omega_1 = 0.01|\Omega_e|$, $\omega_2 = 0.21|\Omega_e|$, $X_2 = 1$. At the dayside, the chorus waves are distributed in the latitudinal region $\lambda \leq 35^\circ$ with the spectral parameters $B_t = 10^{0.75+0.04\lambda}$ pT, $\omega_1 = 0.1|\Omega_e|$, $\omega_2 = 0.3|\Omega_e|$, $\delta\omega = 0.1|\Omega_e|$, $\omega_m = 0.2|\Omega_e|$, $X_m = 0$, $X_0 = 0.577$, $X_1 = 0$ and $X_2 = 1$. On both sides, the resonance orders $n = 0$, ± 1, \ldots, ± 5 are taken into account. It should be noted that these parameters have been frequently used to simulate the chorus-driven radiation belt electron evolution during storms (e.g., Li et al. 2007; Shprits et al. 2009a, b; Subbotin et al. 2010; Su et al. 2009a, 2011a, b, c, 2010a, c; Xiao et al. 2009, 2010b).
Fig. 2.1 Distribution of nightside (left) and dayside (right) chorus-driven diffusion rates in the (α_e, E_k) space.
Fig. 2.2 Nightside (left) and dayside (right) chorus-driven diffusion rate profiles at energies $E_k = 0.5, 1.0$ and 2.0 MeV

2 Local Diffusion

\[\delta \omega = 0.03|\Omega_e|, \omega_m = 0.06|\Omega_e|, X_m = 0, X_\omega = 0.577, X_1 = 0 \text{ and } X_2 = 1. \]
Similar to chorus waves, the cyclotron resonance orders $n = 0, \pm 1, \ldots, \pm 5$ are taken into account for hiss waves. These parameters have been frequently adopted to simulate the hiss-driven radiation belt electron evolution (e.g., Li et al. 2007; Shprits et al. 2009b; Xiao et al. 2009; Su et al. 2010a, 2011a, b, c).

The distributions and profiles of obtained hiss-driven diffusion rates are shown in Figs. 2.5 and 2.6. The maximum diffusion rates occur at the large equatorial pitch-angles and small energies. As the energy increases, the diffusion rates decrease gradually. The maximum values of pitch-angle and cross diffusion rates are 3000 and 50 times larger than the momentum diffusion rates, respectively.

We assume that the hiss waves are distributed in the 15% of electron drift pathes (Li et al. 2007), input the drift-averaged diffusion coefficients into the Eq. (2.9), and obtain the electron flux $j = p^2 f$ evolution (given in Figs. 2.7 and 2.8). As shown
Fig. 2.3 Evolution of chorus-driven electron flux $j = p^2 f$ (arbitrary unit) in the (α_e, E_k) space. The left and right panels correspond to the simulations with and without cross diffusion.
in the simulations with cross diffusion, the hiss waves can effectively scatter the energetic electrons especially at the large pitch-angles, drive them toward the loss cone, and produce the electron precipitation loss. Since the diffusion coefficients generally decrease with increasing energy, the hiss waves show weaker loss effect on the electrons with larger energies. Within two days, the equatorially-trapped electron fluxes at energies $E_k = 0.5, 1.0,$ and 2.0 MeV are cut to 1/5, 1/2, and 2/3, respectively.
2.3 Idealized Simulations

Ignoring of cross diffusion can lead to the overestimate of electron fluxes by <2 times, indicating that cross diffusion plays an insignificant role in hiss-electron cyclotron resonance.

2.3.3 EMIC

The electron density is fixed along the magnetic field line, and the equatorial $\omega_{pe}/|\Omega_e|$ is specified as 15 (Li et al. 2007). It should be mentioned that, the statistical characteristics of EMIC waves are not clear (Shprits et al. 2009a). Based on previous works (Li et al. 2007; Summers et al. 2007b), we concentrate here on the parallel-propagating H$^+$ band EMIC waves. The background ion composition is assumed to be 70% H$^+$ + 20% He$^+$ + 10% O$^+$. The EMIC waves are distributed in the low latitude region $\lambda < 15^\circ$ with spectral parameters $B_t = 1.0$ nT, $\omega_1 = 3.45\Omega_{O^+}$, $\omega_2 = 3.95\Omega_{O^+}$, $\delta\omega = 0.25\Omega_{O^+}$ and $\omega_m = 3.70\Omega_{O^+}$. For such parallel-propagating L-mode waves, only the $n = 1$ order cyclotron resonance can occur (Summers 2005).

The obtained diffusion rate distributions and profiles are plotted in Figs. 2.9 and 2.10. The modeled EMIC waves can only resonate with the high energy electrons (Summers 2005; Summers et al. 2007a). The minimum resonant energy for the present EMIC waves is about $E_{kmin} = 0.4$ MeV. As the energy increases, the resonant pitch-angles extend toward $\alpha_e = 90^\circ$. The maximum values of pitch-angle diffusion rates are about 2×10^7 and 4×10^3 times larger than those of momentum and cross diffusion rates, respectively, indicating the dominance of pitch-angle diffusion.
The EMIC waves are assumed to be distributed in the 5% of drift paths (Li et al. 2007; Shprits et al. 2009b; Su et al. 2010a, 2011a, b, c), and the obtained electron flux evolution is plotted in Figs. 2.11 and 2.12. Due to the dominance of pitch-angle diffusion, there is no notable difference between the simulation results including and ignoring cross diffusion. The EMIC waves can cause rapid precipitation loss of energetic electrons. After 12 h, the electron fluxes near the loss cone at energies $E_k = 0.5, 1.0$ and 2.0 MeV are cut to $1/50$, $1/200$, and $1/3000$, respectively. The EMIC waves cannot scatter the energetic electron near $\alpha_e = 90^\circ$, but the hiss waves
2.3 Idealized Simulations

Fig. 2.7 Evolution of chorus-driven electron flux $j = p^2 f$ (arbitrary unit) in the (α_e, E_k) space. The left and right panels correspond to the simulations with and without cross diffusion.
Fig. 2.8 Electron flux profiles $j = p^2 f$ at the selected time points. The solid and dashed lines represent the simulations with and without cross diffusion.

can drive the electrons with the large pitch-angles toward the loss cone. Hence, the combination of hiss and EMIC waves would produce more effective precipitation loss of radiation belt electrons (Li et al. 2007; Su et al. 2011c).
2.4 Conclusions and Discussions

We have developed an electron radiation belt local diffusion model based on the quasilinear theory. The quasilinear diffusion equation involves the diffusion in pitch-angle, momentum, and cross terms. The including of cross diffusion often yields numerical instability for the common finite difference methods (Albert 2004; Albert and Young 2005). We propose an efficient, stable, and easily-programming numerical scheme, named HFD, to fully solve this diffusion equation (Su et al. 2009c, 2011c; Xiao et al. 2009). This numerical scheme has been widely used by our research group (Su et al. 2009a, b, c, 2010a, b, c, 2011a, b, c; Xiao et al. 2009, 2010b, a, 2011) and other researchers (Fok et al. 2010; Thorne et al. 2010; Tao et al. 2011b; Zheng et al. 2011).

Using this local diffusion model, we have analyzed the effect of chorus, hiss and EMIC on the radiation belt electrons, and particularly identify the importance of cross diffusion.

1. The present simulation results with cross diffusion support the previous finding. The chorus waves can effectively accelerate the energetic electrons, especially at the large pitch-angles: the equatorially trapped energetic electron fluxes can increase by about 1–2 orders of magnitude within 2 days. The hiss waves can drive the electrons at the large pitch-angles toward the loss cone: the equatorially-trapped energetic electron fluxes can be cut to 1/5–2/3 within 2 days. The EMIC waves can effectively scatter the relativistic electrons into the loss cone: the relativistic electron fluxes near the loss cone can be cut to 1/3000–1/50 within 12 h.

Fig. 2.9 Distribution of EMIC-driven diffusion rates in the $({\alpha_e}, E_k)$ space
Fig. 2.10 EMIC-driven diffusion rate profiles at energies $E_k = 0.5, 1.0$ and 2.0 MeV

2. Cross diffusion plays different roles in the different wave-particle interactions. Ignoring of cross diffusion can significantly overestimate the electron fluxes for cyclotron resonance with chorus, slightly overestimate the electron fluxes for the cyclotron resonance with hiss, but have no effect on the electron fluxes for cyclotron resonance with EMIC.
Fig. 2.11 Evolution of EMIC-driven electron flux $j = p^2 f$ (arbitrary unit) in the (α_e, E_k) space. The left and right panels correspond to the simulations with and without cross diffusion.
Fig. 2.12 Electron flux profiles $j = p^2 f$ at the selected time points. The solid and dashed lines represent the simulations with and without cross diffusion, which coincide with each other.
References

References

A Global Kinetic Model for Electron Radiation Belt Formation and Evolution
Su, Z.
2015, XI, 106 p. 46 illus., 39 illus. in color., Hardcover
ISBN: 978-3-662-46650-6