Contents

1 Introduction
- 1.1 Background .. 1
- 1.2 Objectives .. 2
- 1.3 Book Outline ... 3
- References .. 3

2 Literature Review
- 2.1 Introduction .. 5
- 2.2 Ground Deformation Due to Excavation 5
 - 2.2.1 Field Investigation ... 5
 - 2.2.2 Numerical Analysis .. 8
 - 2.2.3 Analytical Solution ... 10
 - 2.2.4 Centrifuge Modelling 11
- 2.3 Soil-Structure Interaction of Multi-propped Excavation 12
 - 2.3.1 Field Investigation ... 12
 - 2.3.2 Numerical Analysis .. 13
 - 2.3.3 Centrifuge Modelling 14
- 2.4 Excavation Base Instability Due to Hydraulic Uplift 15
 - 2.4.1 Field Investigation ... 15
 - 2.4.2 Recommendations in Design Codes 17
- 2.5 Techniques for Simulation of Multi-propped Excavation in Centrifuge 17
- 2.6 Summary .. 18
- References .. 19

3 Field Investigation of a Multi-propped Excavation in Soft Clay
- 3.1 Introduction .. 21
- 3.2 The Site ... 22
 - 3.2.1 Geotechnical Profile ... 22
 - 3.2.2 Construction Sequence 25
- 3.3 Instrumentation ... 28
3.4 Ground Deformation and Soil-Structure Interaction

3.4.1 Lateral Wall Displacement of Panel 4
3.4.2 Lateral Ground Movement Behind Panel 4
3.4.3 Ground Surface Settlement Behind Panel 4
3.4.4 Ground Surface Settlement and $\delta_{v-Max}/\delta_{h-Max}$ Ratios in Shanghai
3.4.5 Change of Lateral Total Earth Pressure
3.4.6 Distribution of Lateral Total Earth Pressure
3.4.7 Prop Load and Equilibrium Analysis of Wall
3.4.8 Apparent Pressure Envelope for Excavations in Shanghai
3.4.9 Pore Water Pressure
3.4.10 Effective Stress Path

3.5 Summary and Conclusions

References

4 Numerical Analyses of the Multi-propped Excavation in Soft Clay

4.1 Background
4.2 Finite Element Analysis
4.2.1 Finite Element Mesh and Boundary Conditions
4.2.2 Constitutive Model and Model Parameters
4.2.3 Numerical Modelling Procedure
4.3 Comparison of Measured and Computed Results
4.3.1 Lateral Wall Displacement
4.3.2 Ground Surface Settlement
4.3.3 Contour of Deviatoric Strain
4.3.4 Mobilisation of Undrained Shear Strength
4.3.5 Lateral Total Earth Pressure
4.3.6 Pore Water Pressure
4.3.7 Apparent Earth Pressure
4.4 Summary and Conclusions

References

5 Dimensional Analysis of Excavation in Clay Subjected Hydraulic Uplift

5.1 Introduction
5.2 Variables Affecting Basal Resistance Against Hydraulic Uplift
5.3 Dimensional Analysis
5.4 Key Dimensionless Groups for This Study

References
6 Centrifuge Modelling of Multi-propped Excavation in Clay Destabilised by Hydraulic Uplift

6.1 Introduction ... 71
6.2 Principles and Scaling Laws 71
6.3 Limitations of Centrifuge Modelling 73
 6.3.1 Variation of Centrifugal Acceleration with Model Depth 73
 6.3.2 Grain Size Effect 74
 6.3.3 Boundary Effect 74
6.4 Test Program and Objectives 75
6.5 Model Package ... 75
 6.5.1 Actuator: For Simulating Prop Installation 76
 6.5.2 Rubber Bag: For Simulating Excavation 78
 6.5.3 Flow Rate Control Valve: Controlling Excavation Rate 79
 6.5.4 Model Wall ... 79
 6.5.5 Model Prop .. 80
 6.5.6 Model Pile ... 80
6.6 Model Preparation and Characterisation of Undrained Shear Strength of Clay 81
6.7 Instrumentation ... 86
 6.7.1 Measurement of Pore Water Pressure 87
 6.7.2 Measurement of Ground Settlement 88
 6.7.3 Measurement of Undrained Shear Strength of Clay 89
 6.7.4 Measurement of Prop Load 90
 6.7.5 Measurement of Bending Movement and Axial Load of Pile 90
 6.7.6 Measurement of Subsurface Soil Movement 91
6.8 Test Procedure ... 93
References ... 94

7 Finite Element Analyses: For Back-Analysis and Parametric Study .. 97
7.1 Introduction ... 97
7.2 Back-Analyses of Centrifuge Tests 98
 7.2.1 Finite Element Mesh and Boundary Conditions 98
 7.2.2 Constitutive Model and Model Parameters 99
 7.2.3 Numerical Modelling Procedure 100
7.3 Numerical Parametric Study 100
References ... 101
8 Interpretations of Measured and Back-Analysed Results of Centrifuge Tests
8.1 Introduction
8.2 Interpretation of Measured and Computed Results
 8.2.1 Profiles of Over-Consolidation Ratio and At-Rest Lateral Earth Pressure Coefficient
 8.2.2 Undrained Shear Strength Profile
 8.2.3 Lateral Wall Displacement
 8.2.4 Ground Deformation Mechanism Due to Excavation
 8.2.5 Ground Deformation Mechanism Due to Hydraulic Uplift
 8.2.6 Uplift Movement in Response to Hydraulic Uplift
 8.2.7 Bending Moment and Axial Load in Piles
 8.2.8 Prop Load
8.3 Improved Understanding from Numerical Back-Analysis
 8.3.1 Comparison Between “Idealised Modelling Technique” and “Rigorous Modelling Technique
 8.3.2 Mobilised Undrained Shear Strength
 8.3.3 Load Transfer from Soil to Pile
8.4 Numerical Parametric Study on Embedment Depth of Piles
 8.4.1 Influence of Pile Length on Effectiveness of Base Stabilisation
 8.4.2 Axial Load and Unit Shaft Friction of Piles with Varied Lengths
8.5 Summary and Conclusions
References

9 Numerical Parametric Study
9.1 Introduction
9.2 Numerical Parametric Study
9.3 Results of Numerical Parametric Study
 9.3.1 Uplift Movement in Response of Hydraulic Pressure
 9.3.2 Initiation of Hydraulic Uplift
 9.3.3 Calculation Chart for Estimating Initiation of Hydraulic Uplift (P_u)
 9.3.4 Failure Mechanism
 9.3.5 Change of Pore Water Pressure in Response to Hydraulic Uplift
 9.3.6 Change of Effective Stress Path in Response to Hydraulic Uplift
9.4 An Alternative Method for Base Stabilisation
9.5 Summary and Conclusions
References
10 Conclusions and Future Work 145
 10.1 Summary of This Research 145
 10.2 Ground Deformation of Multi-propped Excavation in Soft Clay .. 146
 10.2.1 Comparison Between Excavation in Greenfield Site and Densely Built Area 146
 10.2.2 Influence Factors on Ground Deformation of Excavations in Shanghai 147
 10.3 Soil-Structure Interaction of Multi-propped Excavation in Soft Clay .. 148
 10.3.1 Lateral Total Earth Pressure 148
 10.3.2 Pore Water Pressure 148
 10.3.3 Effective Stress Path 149
 10.3.4 Effect of Jet Grouted Prop on Soil-Structure Interaction ... 149
 10.3.5 Prop Load .. 150
 10.4 Excavation Base Instability Associated with Hydraulic Uplift .. 150
 10.4.1 Initiation of Base Instability 150
 10.4.2 Failure Mechanisms 151
 10.4.3 Proposed Alternative Methods for Base Stabilisation .. 151
 10.4.4 Verification of ‘Idealised Modelling Technique’ .. 151
 10.5 Recommendations for Further Work 152
 10.5.1 Further Verification of ‘Greenfield Effect’ .. 152
 10.5.2 Further Verification of ‘Idealised Modelling Technique’ ... 152
 10.5.3 Alternative Methods for Base Stabilisation ... 152

References .. 153

Index ... 155
Deformation and Failure Mechanism of Excavation in Clay Subjected to Hydraulic Uplift
Hong, Y.; Wang, L.
2016, XIV, 156 p. 82 illus., 42 illus. in color., Hardcover
ISBN: 978-3-662-46506-6