Contents

1 Fundamental Equations of Laminated Beams, Plates and Shells 1
 1.1 Three-Dimensional Elasticity Theory in Curvilinear Coordinates 1
 1.2 Fundamental Equations of Thin Laminated Shells .. 3
 1.2.1 Kinematic Relations .. 3
 1.2.2 Stress-Strain Relations and Stress Resultants 5
 1.2.3 Energy Functions ... 9
 1.2.4 Governing Equations and Boundary Conditions 11
 1.3 Fundamental Equations of Thick Laminated Shells 16
 1.3.1 Kinematic Relations 17
 1.3.2 Stress-Strain Relations and Stress Resultants 18
 1.3.3 Energy Functions ... 23
 1.3.4 Governing Equations and Boundary Conditions 26
 1.4 Lamé Parameters for Plates and Shells ... 29

2 Modified Fourier Series and Rayleigh-Ritz Method ... 37
 2.1 Modified Fourier Series ... 38
 2.1.1 Traditional Fourier Series Solutions 39
 2.1.2 One-Dimensional Modified Fourier Series Solutions 43
 2.1.3 Two-Dimensional Modified Fourier Series Solutions 48
 2.2 Strong Form Solution Procedure ... 53
 2.3 Rayleigh-Ritz Method (Weak Form Solution Procedure) 58

3 Straight and Curved Beams ... 63
 3.1 Fundamental Equations of Thin Laminated Beams 64
 3.1.1 Kinematic Relations ... 64
 3.1.2 Stress-Strain Relations and Stress Resultants 65
 3.1.3 Energy Functions ... 66
4.5 Vibration of Laminated Sectorial, Annular
and Circular Plates .. 139
4.5.1 Vibration of Laminated Annular
and Circular Plates .. 139
4.5.2 Vibration of Laminated Sectorial Plates 144

5 Cylindrical Shells .. 153
 5.1 Fundamental Equations of Thin Laminated
Cylindrical Shells .. 156
 5.1.1 Kinematic Relations 156
 5.1.2 Stress-Strain Relations and Stress Resultants 157
 5.1.3 Energy Functions 158
 5.1.4 Governing Equations and Boundary Conditions 159
 5.2 Fundamental Equations of Thick Laminated
Cylindrical Shells .. 162
 5.2.1 Kinematic Relations 162
 5.2.2 Stress-Strain Relations and Stress Resultants 163
 5.2.3 Energy Functions 165
 5.2.4 Governing Equations and Boundary Conditions 167
 5.3 Vibration of Laminated Closed Cylindrical Shells 169
 5.3.1 Convergence Studies and Result Verification 172
 5.3.2 Effects of Shear Deformation and Rotary Inertia 175
 5.3.3 Laminated Closed Cylindrical Shells
 with General End Conditions 177
 5.3.4 Laminated Closed Cylindrical Shells
 with Intermediate Ring Supports 184
 5.4 Vibration of Laminated Open Cylindrical Shells 188
 5.4.1 Convergence Studies and Result Verification 192
 5.4.2 Laminated Open Cylindrical Shells
 with General End Conditions 193

6 Conical Shells .. 199
 6.1 Fundamental Equations of Thin Laminated Conical Shells 200
 6.1.1 Kinematic Relations 201
 6.1.2 Stress-Strain Relations and Stress Resultants 201
 6.1.3 Energy Functions 202
 6.1.4 Governing Equations and Boundary Conditions 202
 6.2 Fundamental Equations of Thick Laminated Conical Shells 207
 6.2.1 Kinematic Relations 208
 6.2.2 Stress-Strain Relations and Stress Resultants 209
 6.2.3 Energy Functions 210
 6.2.4 Governing Equations and Boundary Conditions 211
 6.3 Vibration of Laminated Closed Conical Shells 215
 6.3.1 Convergence Studies and Result Verification 217
6.3.2 Laminated Closed Conical Shells with General Boundary Conditions 219

6.4 Vibration of Laminated Open Conical Shells 225
 6.4.1 Convergence Studies and Result Verification 227
 6.4.2 Laminated Open Conical Shells with General Boundary Conditions 228

7 Spherical Shells 235
 7.1 Fundamental Equations of Thin Laminated Spherical Shells 237
 7.1.1 Kinematic Relations 237
 7.1.2 Stress-Strain Relations and Stress Resultants 238
 7.1.3 Energy Functions 238
 7.1.4 Governing Equations and Boundary Conditions 239
 7.2 Fundamental Equations of Thick Laminated Spherical Shells 241
 7.2.1 Kinematic Relations 241
 7.2.2 Stress-Strain Relations and Stress Resultants 242
 7.2.3 Energy Functions 243
 7.2.4 Governing Equations and Boundary Conditions 245
 7.3 Vibration of Laminated Closed Spherical Shells 250
 7.3.1 Convergence Studies and Result Verification 251
 7.3.2 Closed Laminated Spherical Shells with General Boundary Conditions 252
 7.4 Vibration of Laminated Open Spherical Shells 257
 7.4.1 Convergence Studies and Result Verification 260
 7.4.2 Laminated Open Spherical Shells with General Boundary Conditions 263

8 Shallow Shells 271
 8.1 Fundamental Equations of Thin Laminated Shallow Shells 273
 8.1.1 Kinematic Relations 274
 8.1.2 Stress-Strain Relations and Stress Resultants 275
 8.1.3 Energy Functions 275
 8.1.4 Governing Equations and Boundary Conditions 276
 8.2 Fundamental Equations of Thick Laminated Shallow Shells 279
 8.2.1 Kinematic Relations 279
 8.2.2 Stress-Strain Relations and Stress Resultants 280
 8.2.3 Energy Functions 280
 8.2.4 Governing Equations and Boundary Conditions 281
 8.3 Vibration of Laminated Shallow Shells 284
 8.3.1 Convergence Studies and Result Verification 286
 8.3.2 Laminated Shallow Shells with General Boundary Conditions 288

References and Further Reading 305
Structural Vibration
A Uniform Accurate Solution for Laminated Beams, Plates and Shells with General Boundary Conditions
Jin, G.; Ye, T.; Su, Z.
2015, XII, 312 p. 92 illus., Hardcover