1 Arithmetics .. 1
 1.1 Elementary Rules for Calculations 1
 1.1.1 Numbers ... 1
 1.1.1.1 Natural, Integer, and Rational Numbers 1
 1.1.1.2 Irrational and Transcendental Numbers 2
 1.1.1.3 Real Numbers 2
 1.1.1.4 Continued Fractions 3
 1.1.1.5 Commensurability 4
 1.1.2 Methods for Proof 4
 1.1.2.1 Direct Proof 5
 1.1.2.2 Indirect Proof or Proof by Contradiction 5
 1.1.2.3 Mathematical Induction 5
 1.1.2.4 Constructive Proof 6
 1.1.3 Sums and Products 6
 1.1.3.1 Sums .. 6
 1.1.3.2 Products 7
 1.1.4 Powers, Roots, and Logarithms 7
 1.1.4.1 Powers .. 7
 1.1.4.2 Roots ... 8
 1.1.4.3 Logarithms 9
 1.1.4.4 Special Logarithms 9
 1.1.5 Algebraic Expressions 10
 1.1.5.1 Definitions 10
 1.1.5.2 Algebraic Expressions in Detail 11
 1.1.6 Integral Rational Expressions 11
 1.1.6.1 Representation in Polynomial Form 11
 1.1.6.2 Factoring Polynomials 11
 1.1.6.3 Special Formulas 12
 1.1.6.4 Binomial Theorem 12
 1.1.6.5 Determination of the Greatest Common Divisor of Two Polynomials 14
 1.1.7 Rational Expressions 14
 1.1.7.1 Reducing to the Simplest Form 14
 1.1.7.2 Determination of the Integral Rational Part 15
 1.1.7.3 Partial Fraction Decomposition 15
 1.1.7.4 Transformations of Proportions 17
 1.1.8 Irrational Expressions 17
 1.2 Finite Series .. 18
 1.2.1 Definition of a Finite Series 18
 1.2.2 Arithmetic Series 18
 1.2.3 Geometric Series 19
 1.2.4 Special Finite Series 19
 1.2.5 Mean Values 19
 1.2.5.1 Arithmetic Mean or Arithmetic Average 19
 1.2.5.2 Geometric Mean or Geometric Average 20
 1.2.5.3 Harmonic Mean 20
 1.2.5.4 Quadratic Mean 20
1.2.5.5 Relations Between the Means of Two Positive Values

1.3 Business Mathematics

1.3.1 Calculation of Interest or Percentage

1.3.1.1 Percentage or Interest

1.3.1.2 Increment

1.3.1.3 Discount or Reduction

1.3.2 Calculation of Compound Interest

1.3.2.1 Interest

1.3.2.2 Compound Interest

1.3.3 Amortization Calculus

1.3.3.1 Amortization

1.3.3.2 Equal Principal Repayments

1.3.3.3 Equal Annuities

1.3.4 Annuity Calculations

1.3.4.1 Annuities

1.3.4.2 Future Amount of an Ordinary Annuity

1.3.4.3 Balance after n Annuity Payments

1.3.5 Depreciation

1.3.5.1 Methods of Depreciation

1.3.5.2 Straight-Line Method

1.3.5.3 Arithmetically Declining Balance Depreciation

1.3.5.4 Digital Declining Balance Depreciation

1.3.5.5 Geometrically Declining Balance Depreciation

1.3.5.6 Depreciation with Different Types of Depreciation Account

1.4 Inequalities

1.4.1 Pure Inequalities

1.4.1.1 Definitions

1.4.1.2 Properties of Inequalities of Type I and II

1.4.2 Special Inequalities

1.4.2.1 Triangle Inequality for Real Numbers

1.4.2.2 Triangle Inequality for Complex Numbers

1.4.2.3 Inequalities for Absolute Values of Differences of Real and Complex Numbers

1.4.2.4 Inequality for Arithmetic and Geometric Means

1.4.2.5 Inequality for Arithmetic and Quadratic Means

1.4.2.6 Inequalities for Different Means of Real Numbers

1.4.2.7 Bernoulli’s Inequality

1.4.2.8 Binomial Inequality

1.4.2.9 Cauchy-Schwarz Inequality

1.4.2.10 Chebyshev Inequality

1.4.2.11 Generalized Chebyshev Inequality

1.4.2.12 Hölder Inequality

1.4.2.13 Minkowski Inequality

1.4.3 Solution of Linear and Quadratic Inequalities

1.4.3.1 General Remarks

1.4.3.2 Linear Inequalities

1.4.3.3 Quadratic Inequalities

1.4.3.4 General Case for Inequalities of Second Degree

1.5 Complex Numbers

1.5.1 Imaginary and Complex Numbers

1.5.1.1 Imaginary Unit

1.5.1.2 Complex Numbers
1.5.2 Geometric Representation ... 34
1.5.2.1 Vector Representation ... 34
1.5.2.2 Equality of Complex Numbers 35
1.5.2.3 Trigonometric Form of Complex Numbers 35
1.5.2.4 Exponential Form of a Complex Number 36
1.5.2.5 Conjugate Complex Numbers 36
1.5.3 Calculation with Complex Numbers 36
1.5.3.1 Addition and Subtraction 36
1.5.3.2 Multiplication .. 37
1.5.3.3 Division .. 37
1.5.3.4 General Rules for the Basic Operations 37
1.5.3.5 Taking Powers of Complex Numbers 38
1.5.3.6 Taking the n-th Root of a Complex Number 38
1.6 Algebraic and Transcendental Equations 38
1.6.1 Transforming Algebraic Equations to Normal Form 38
1.6.1.1 Definition ... 38
1.6.1.2 Systems of n Algebraic Equations 39
1.6.1.3 Extraneous Roots .. 39
1.6.2 Equations of Degree at Most Four 39
1.6.2.1 Equations of Degree One (Linear Equations) 39
1.6.2.2 Equations of Degree Two (Quadratic Equations) 40
1.6.2.3 Equations of Degree Three (Cubic Equations) 40
1.6.2.4 Equations of Degree Four 42
1.6.2.5 Equations of Higher Degree 43
1.6.3 Equations of Degree n ... 43
1.6.3.1 General Properties of Algebraic Equations 43
1.6.3.2 Equations with Real Coefficients 44
1.6.4 Reducing Transcendental Equations to Algebraic Equations ... 45
1.6.4.1 Definition ... 45
1.6.4.2 Exponential Equations 46
1.6.4.3 Logarithmic Equations 46
1.6.4.4 Trigonometric Equations 46
1.6.4.5 Equations with Hyperbolic Functions 47

2 Functions 48
2.1 Notion of Functions .. 48
2.1.1 Definition of a Function ... 48
2.1.1.1 Function ... 48
2.1.1.2 Real Functions ... 48
2.1.1.3 Functions of Several Variables 48
2.1.1.4 Complex Functions .. 48
2.1.1.5 Further Functions .. 48
2.1.1.6 Functionals .. 48
2.1.1.7 Functions and Mappings 49
2.1.2 Methods for Defining a Real Function 49
2.1.2.1 Defining a Function ... 49
2.1.2.2 Analytic Representation of a Function 49
2.1.3 Certain Types of Functions 50
2.1.3.1 Monotone Functions ... 50
2.1.3.2 Bounded Functions .. 51
2.1.3.3 Extreme Values of Functions 51
2.1.3.4 Even Functions .. 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3.5</td>
<td>Odd Functions</td>
<td>51</td>
</tr>
<tr>
<td>2.1.3.6</td>
<td>Representation with Even and Odd Functions</td>
<td>52</td>
</tr>
<tr>
<td>2.1.3.7</td>
<td>Periodic Functions</td>
<td>52</td>
</tr>
<tr>
<td>2.1.3.8</td>
<td>Inverse Functions</td>
<td>52</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Limits of Functions</td>
<td>53</td>
</tr>
<tr>
<td>2.1.4.1</td>
<td>Definition of the Limit of a Function</td>
<td>53</td>
</tr>
<tr>
<td>2.1.4.2</td>
<td>Definition by Limit of Sequences</td>
<td>53</td>
</tr>
<tr>
<td>2.1.4.3</td>
<td>Cauchy Condition for Convergence</td>
<td>53</td>
</tr>
<tr>
<td>2.1.4.4</td>
<td>Infinity as a Limit of a Function</td>
<td>53</td>
</tr>
<tr>
<td>2.1.4.5</td>
<td>Left-Hand and Right-Hand Limit of a Function</td>
<td>54</td>
</tr>
<tr>
<td>2.1.4.6</td>
<td>Limit of a Function as (x) Tends to Infinity</td>
<td>54</td>
</tr>
<tr>
<td>2.1.4.7</td>
<td>Theorems About Limits of Functions</td>
<td>55</td>
</tr>
<tr>
<td>2.1.4.8</td>
<td>Calculation of Limits</td>
<td>55</td>
</tr>
<tr>
<td>2.1.4.9</td>
<td>Order of Magnitude of Functions and Landau Order Symbols</td>
<td>57</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Continuity of a Function</td>
<td>58</td>
</tr>
<tr>
<td>2.1.5.1</td>
<td>Notion of Continuity and Discontinuity</td>
<td>58</td>
</tr>
<tr>
<td>2.1.5.2</td>
<td>Definition of Continuity</td>
<td>58</td>
</tr>
<tr>
<td>2.1.5.3</td>
<td>Most Frequent Types of Discontinuities</td>
<td>59</td>
</tr>
<tr>
<td>2.1.5.4</td>
<td>Continuity and Discontinuity of Elementary Functions</td>
<td>60</td>
</tr>
<tr>
<td>2.1.5.5</td>
<td>Properties of Continuous Functions</td>
<td>60</td>
</tr>
<tr>
<td>2.2</td>
<td>Elementary Functions</td>
<td>62</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Algebraic Functions</td>
<td>62</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Polynomials</td>
<td>62</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Rational Functions</td>
<td>62</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Irrational Functions</td>
<td>62</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Transcendental Functions</td>
<td>62</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Exponential Functions</td>
<td>62</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Logarithmic Functions</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Trigonometric Functions</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Inverse Trigonometric Functions</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Hyperbolic Functions</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.6</td>
<td>Inverse Hyperbolic Functions</td>
<td>63</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Composite Functions</td>
<td>63</td>
</tr>
<tr>
<td>2.3</td>
<td>Polynomials</td>
<td>63</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Linear Function</td>
<td>63</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Quadratic Polynomial</td>
<td>64</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Cubic Polynomials</td>
<td>64</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Polynomials of (n)-th Degree</td>
<td>65</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Parabola of (n)-th Degree</td>
<td>66</td>
</tr>
<tr>
<td>2.4</td>
<td>Rational Functions</td>
<td>66</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Special Fractional Linear Function (Inverse Proportionality)</td>
<td>66</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Linear Fractional Function</td>
<td>66</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Curves of Third Degree, Type I</td>
<td>67</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Curves of Third Degree, Type II</td>
<td>67</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Curves of Third Degree, Type III</td>
<td>68</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Reciprocal Powers</td>
<td>70</td>
</tr>
<tr>
<td>2.5</td>
<td>Irrational Functions</td>
<td>71</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Square Root of a Linear Binomial</td>
<td>71</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Square Root of a Quadratic Polynomial</td>
<td>71</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Power Function</td>
<td>71</td>
</tr>
<tr>
<td>2.6</td>
<td>Exponential Functions and Logarithmic Functions</td>
<td>72</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Exponential Functions</td>
<td>72</td>
</tr>
</tbody>
</table>
2.6.2 Logarithmic Functions ... 73
2.6.3 Error Curve ... 73
2.6.4 Exponential Sum ... 74
2.6.5 Generalized Error Function .. 74
2.6.6 Product of Power and Exponential Functions 75
2.7 Trigonometric Functions (Functions of Angles) 76
2.7.1 Basic Notions ... 76
 2.7.1.1 Definition and Representation 76
 2.7.1.2 Range and Behavior of the Functions 79
2.7.2 Important Formulas for Trigonometric Functions 81
 2.7.2.1 Relations Between the Trigonometric Functions 81
 2.7.2.2 Trigonometric Functions of the Sum and Difference of Two Angles (Addition Theorems) 81
 2.7.2.3 Trigonometric Functions of an Integer Multiple of an Angle 81
 2.7.2.4 Trigonometric Functions of Half-Angles 82
 2.7.2.5 Sum and Difference of Two Trigonometric Functions 83
 2.7.2.6 Products of Trigonometric Functions 83
 2.7.2.7 Powers of Trigonometric Functions 83
2.7.3 Description of Oscillations 84
 2.7.3.1 Formulation of the Problem 84
 2.7.3.2 Superposition of Oscillations 84
 2.7.3.3 Vector Diagram for Oscillations 85
 2.7.3.4 Damping of Oscillations 85
2.8 Cyclometric or Inverse Trigonometric Functions 85
 2.8.1 Definition of the Inverse Trigonometric Functions 85
 2.8.2 Reduction to the Principal Value 86
 2.8.3 Relations Between the Principal Values 87
 2.8.4 Formulas for Negative Arguments 87
 2.8.5 Sum and Difference of arcsin x and arcsin y 88
 2.8.6 Sum and Difference of arccos x and arccos y 88
 2.8.7 Sum and Difference of arctan x and arctan y 88
 2.8.8 Special Relations for arcsin x, arccos x, arctan x 88
2.9 Hyperbolic Functions ... 89
 2.9.1 Definition of Hyperbolic Functions 89
 2.9.2 Graphical Representation of the Hyperbolic Functions 89
 2.9.2.1 Hyperbolic Sine ... 89
 2.9.2.2 Hyperbolic Cosine .. 89
 2.9.2.3 Hyperbolic Tangent 90
 2.9.2.4 Hyperbolic Cotangent 90
 2.9.3 Important Formulas for the Hyperbolic Functions 91
 2.9.3.1 Hyperbolic Functions of One Variable 91
 2.9.3.2 Expressing a Hyperbolic Function by Another One with the Same Argument 91
 2.9.3.3 Formulas for Negative Arguments 91
 2.9.3.4 Hyperbolic Functions of the Sum and Difference of Two Arguments (Addition Theorems) 91
 2.9.3.5 Hyperbolic Functions of Double Arguments 92
 2.9.3.6 De Moivre Formula for Hyperbolic Functions 92
 2.9.3.7 Hyperbolic Functions of Half-Argument 92
 2.9.3.8 Sum and Difference of Hyperbolic Functions 92
 2.9.3.9 Relation Between Hyperbolic and Trigonometric Functions with Complex Arguments z 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>Area Functions</td>
<td>93</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Definitions</td>
<td>93</td>
</tr>
<tr>
<td>2.10.1.1</td>
<td>Area Sine</td>
<td>93</td>
</tr>
<tr>
<td>2.10.1.2</td>
<td>Area Cosine</td>
<td>93</td>
</tr>
<tr>
<td>2.10.1.3</td>
<td>Area Tangent</td>
<td>94</td>
</tr>
<tr>
<td>2.10.1.4</td>
<td>Area Cotangent</td>
<td>94</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Determination of Area Functions Using Natural Logarithm</td>
<td>94</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Relations Between Different Area Functions</td>
<td>94</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Sum and Difference of Area Functions</td>
<td>95</td>
</tr>
<tr>
<td>2.10.5</td>
<td>Formulas for Negative Arguments</td>
<td>95</td>
</tr>
<tr>
<td>2.11</td>
<td>Curves of Order Three (Cubic Curves)</td>
<td>95</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Semicubic Parabola</td>
<td>95</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Witch of Agnesi</td>
<td>95</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Cartesian Folium (Folium of Descartes)</td>
<td>96</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Cissoid</td>
<td>96</td>
</tr>
<tr>
<td>2.11.5</td>
<td>Strophoide</td>
<td>97</td>
</tr>
<tr>
<td>2.12</td>
<td>Curves of Order Four (Quartics)</td>
<td>97</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Conchoid of Nicomedes</td>
<td>97</td>
</tr>
<tr>
<td>2.12.2</td>
<td>General Conchoid</td>
<td>98</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Pascal’s Limaçon</td>
<td>98</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Cardioid</td>
<td>99</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Cassinian Curve</td>
<td>100</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Lemniscate</td>
<td>101</td>
</tr>
<tr>
<td>2.13</td>
<td>Cycloids</td>
<td>101</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Common (Standard) Cycloid</td>
<td>101</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Prolate and Curtate Cycloids or Trochoids</td>
<td>102</td>
</tr>
<tr>
<td>2.13.3</td>
<td>Epicycloid</td>
<td>102</td>
</tr>
<tr>
<td>2.13.4</td>
<td>Hypocycloid and Astroid</td>
<td>103</td>
</tr>
<tr>
<td>2.13.5</td>
<td>Prolate and Curtate Epicycloid and Hypocycloid</td>
<td>104</td>
</tr>
<tr>
<td>2.14</td>
<td>Spirals</td>
<td>105</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Archimedean Spiral</td>
<td>105</td>
</tr>
<tr>
<td>2.14.2</td>
<td>Hyperbolic Spiral</td>
<td>105</td>
</tr>
<tr>
<td>2.14.3</td>
<td>Logarithmic Spiral</td>
<td>106</td>
</tr>
<tr>
<td>2.14.4</td>
<td>Evolute of the Circle</td>
<td>106</td>
</tr>
<tr>
<td>2.14.5</td>
<td>Clothoid</td>
<td>107</td>
</tr>
<tr>
<td>2.15</td>
<td>Various Other Curves</td>
<td>107</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Catenary Curve</td>
<td>107</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Tractrix</td>
<td>108</td>
</tr>
<tr>
<td>2.16</td>
<td>Determination of Empirical Curves</td>
<td>108</td>
</tr>
<tr>
<td>2.16.1</td>
<td>Procedure</td>
<td>108</td>
</tr>
<tr>
<td>2.16.1.1</td>
<td>Curve-Shape Comparison</td>
<td>108</td>
</tr>
<tr>
<td>2.16.1.2</td>
<td>Rectification</td>
<td>108</td>
</tr>
<tr>
<td>2.16.1.3</td>
<td>Determination of Parameters</td>
<td>109</td>
</tr>
<tr>
<td>2.16.2</td>
<td>Useful Empirical Formulas</td>
<td>109</td>
</tr>
<tr>
<td>2.16.2.1</td>
<td>Power Functions</td>
<td>109</td>
</tr>
<tr>
<td>2.16.2.2</td>
<td>Exponential Functions</td>
<td>110</td>
</tr>
<tr>
<td>2.16.2.3</td>
<td>Quadratic Polynomial</td>
<td>111</td>
</tr>
<tr>
<td>2.16.2.4</td>
<td>Rational Linear Functions</td>
<td>111</td>
</tr>
<tr>
<td>2.16.2.5</td>
<td>Square Root of a Quadratic Polynomial</td>
<td>111</td>
</tr>
<tr>
<td>2.16.2.6</td>
<td>General Error Curve</td>
<td>112</td>
</tr>
<tr>
<td>2.16.2.7</td>
<td>Curve of Order Three, Type II</td>
<td>112</td>
</tr>
<tr>
<td>2.16.2.8</td>
<td>Curve of Order Three, Type III</td>
<td>112</td>
</tr>
</tbody>
</table>
3.1.5 Angles Measured in Degrees and in Radians 131
3.1.2 Geometrical Definition of Circular and Hyperbolic Functions 131
3.1.2.1 Definition of Circular or Trigonometric Functions 131
3.1.2.2 Definitions of the Hyperbolic Functions 132
3.1.3 Plane Triangles ... 132
3.1.3.1 Statements about Plane Triangles ... 132
3.1.3.2 Symmetry .. 133
3.1.4 Plane Quadrangles ... 135
3.1.4.1 Parallelogram ... 135
3.1.4.2 Rectangle and Square ... 136
3.1.4.3 Rhombus .. 136
3.1.4.4 Trapezoid .. 136
3.1.4.5 General Quadrangle ... 136
3.1.4.6 Inscribed Quadrangle ... 137
3.1.4.7 Circumscribing Quadrangle .. 137
3.1.5 Polygons in the Plane ... 138
3.1.5.1 General Polygon ... 138
3.1.5.2 Regular Convex Polygons ... 138
3.1.5.3 Some Regular Convex Polygons .. 139
3.1.6 The Circle and Related Shapes ... 139
3.1.6.1 Circle .. 139
3.1.6.2 Circular Segment and Circular Sector 141
3.1.6.3 Annulus .. 141
3.2 Plane Trigonometry ... 142
3.2.1 Triangles ... 142
3.2.1.1 Calculations in Right-Angled Triangles in the Plane 142
3.2.1.2 Calculations in General (Oblique) Triangles in the Plane 142
3.2.2 Geodesic Applications .. 144
3.2.2.1 Geodesic Coordinates .. 144
3.2.2.2 Angles in Geodesy ... 146
3.2.2.3 Applications in Surveying ... 148
3.3 Stereometry ... 151
3.3.1 Lines and Planes in Space .. 151
3.3.2 Edge, Corner, Solid Angle .. 152
3.3.3 Polyeder or Polyhedron ... 153
3.3.4 Solids Bounded by Curved Surfaces .. 156
3.4 Spherical Trigonometry ... 160
3.4.1 Basic Concepts of Geometry on the Sphere 160
3.4.1.1 Curve, Arc, and Angle on the Sphere 160
3.4.1.2 Special Coordinate Systems .. 162
3.4.1.3 Spherical Lune or Biangle ... 163
3.4.1.4 Spherical Triangle ... 163
3.4.1.5 Polar Triangle ... 164
3.4.1.6 Euler Triangle and Non-Euler Triangles 164
3.4.1.7 Trihedral Angle .. 164
3.4.2 Basic Properties of Spherical Triangles 165
3.4.2.1 General Statements ... 165
3.4.2.2 Fundamental Formulas and Applications 165
3.4.2.3 Further Formulas ... 168
3.4.3 Calculation of Spherical Triangles ... 169
3.4.3.1 Basic Problems, Accuracy Observations 169
3.4.3.2 Right-Angled Spherical Triangles ... 169
3.4.3.3 Spherical Triangles with Oblique Angles .. 171
3.4.3.4 Spherical Curves .. 174
3.5 Vector Algebra and Analytical Geometry ... 181
 3.5.1 Vector Algebra ... 181
 3.5.1.1 Definition of Vectors .. 181
 3.5.1.2 Calculation Rules for Vectors .. 182
 3.5.1.3 Coordinates of a Vector .. 183
 3.5.1.4 Directional Coefficient .. 184
 3.5.1.5 Scalar Product and Vector Product .. 184
 3.5.1.6 Combination of Vector Products ... 185
 3.5.1.7 Vector Equations ... 188
 3.5.1.8 Covariant and Contravariant Coordinates of a Vector 188
 3.5.1.9 Geometric Applications of Vector Algebra .. 190
 3.5.2 Analytical Geometry of the Plane ... 190
 3.5.2.1 Basic Concepts, Coordinate Systems in the Plane 190
 3.5.2.2 Coordinate Transformations ... 191
 3.5.2.3 Special Notations and Points in the Plane .. 192
 3.5.2.4 Areas .. 194
 3.5.2.5 Equation of a Curve .. 195
 3.5.2.6 Line .. 195
 3.5.2.7 Circle ... 198
 3.5.2.8 Ellipse ... 199
 3.5.2.9 Hyperbola ... 201
 3.5.2.10 Parabola .. 204
 3.5.2.11 Quadratic Curves (Curves of Second Order or Conic Sections) 206
 3.5.3 Analytical Geometry of Space .. 209
 3.5.3.1 Basic Concepts ... 209
 3.5.3.2 Spatial Coordinate Systems ... 210
 3.5.3.3 Transformation of Orthogonal Coordinates 212
 3.5.3.4 Rotations with Direction Cosines ... 213
 3.5.3.5 Cardan Angles .. 214
 3.5.3.6 Euler’s angles .. 215
 3.5.3.7 Special Quantities in Space ... 216
 3.5.3.8 Equation of a Surface .. 217
 3.5.3.9 Equation of a Space Curve ... 218
 3.5.3.10 Line and Plane in Space ... 218
 3.5.3.11 Lines in Space .. 221
 3.5.3.12 Intersection Points and Angles of Lines and Planes in Space 223
 3.5.3.13 Surfaces of Second Order, Equations in Normal Form 224
 3.5.3.14 Surfaces of Second Order or Quadratic Surfaces, General Theory 228
 3.5.4 Geometric Transformations and Coordinate Transformations 229
 3.5.4.1 Geometric 2D Transformations ... 229
 3.5.4.2 Homogeneous Coordinates, Matrix Representation 231
 3.5.4.3 Coordinate Transformation ... 231
 3.5.4.4 Composition of Transformations ... 232
 3.5.4.5 3D–Transformations .. 233
 3.5.4.6 Deformation Transformations .. 236
 3.5.5 Planar Projections ... 237
 3.5.5.1 Classification of the projections ... 237
 3.5.5.2 Local or Projection Coordinate System ... 238
 3.5.5.3 Principal Projections .. 238
 3.5.5.4 Axonometric Projection ... 238
3.5.5.5 Isometric Projection ... 239
3.5.5.6 Oblique Parallel Projection 240
3.5.5.7 Perspective Projection .. 241

3.6 Differential Geometry ... 243
3.6.1 Plane Curves .. 243
3.6.1.1 Ways to Define a Plane Curve 243
3.6.1.2 Local Elements of a Curve 243
3.6.1.3 Special Points of a Curve 249
3.6.1.4 Asymptotes of Curves .. 252
3.6.1.5 General Discussion of a Curve Given by an Equation 253
3.6.1.6 Evolutes and Evolvents 254
3.6.1.7 Envelope of a Family of Curves 255

3.6.2 Space Curves ... 256
3.6.2.1 Ways to Define a Space Curve 256
3.6.2.2 Moving Trihedral .. 256
3.6.2.3 Curvature and Torsion .. 258

3.6.3 Surfaces .. 261
3.6.3.1 Ways to Define a Surface 261
3.6.3.2 Tangent Plane and Surface Normal 262
3.6.3.3 Line Elements of a Surface 263
3.6.3.4 Curvature of a Surface ... 265
3.6.3.5 Ruled Surfaces and Developable Surfaces 268
3.6.3.6 Geodesic Lines on a Surface 268

4 Linear Algebra .. 269
4.1 Matrices ... 269
4.1.1 Notion of Matrix .. 269
4.1.2 Square Matrices ... 270
4.1.3 Vectors ... 271
4.1.4 Arithmetical Operations with Matrices 272
4.1.5 Rules of Calculation for Matrices 275
4.1.6 Vector and Matrix Norms 276
4.1.6.1 Vector Norms .. 277
4.1.6.2 Matrix Norms .. 277

4.2 Determinants .. 278
4.2.1 Definitions .. 278
4.2.2 Rules of Calculation for Determinants 278
4.2.3 Evaluation of Determinants 279

4.3 Tensors ... 280
4.3.1 Transformation of Coordinate Systems 280
4.3.2 Tensors in Cartesian Coordinates 281
4.3.3 Tensors with Special Properties 283
4.3.3.1 Tensors of Rank 2 .. 283
4.3.3.2 Invariant Tensors .. 283

4.3.4 Tensors in Curvilinear Coordinate Systems 284
4.3.4.1 Covariant and Contravariant Basis Vectors 284
4.3.4.2 Covariant and Contravariant Coordinates of Tensors of Rank 1 285
4.3.4.3 Covariant, Contravariant and Mixed Coordinates of Tensors of Rank 2 286

4.3.5 Pseudotensors ... 287
4.3.5.1 Symmetry with Respect to the Origin 287
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.5.2</td>
<td>Introduction to the Notion of Pseudotensors</td>
<td>288</td>
</tr>
<tr>
<td>4.4</td>
<td>Quaternions and Applications</td>
<td>289</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Quaternions</td>
<td>290</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Definition and Representation</td>
<td>290</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Matrix Representation of Quaternions</td>
<td>291</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>Calculation Rules</td>
<td>292</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Representation of Rotations in \mathbb{R}^3</td>
<td>294</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Rotations of an Object About the Coordinate Axes</td>
<td>295</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>Cardan-Angles</td>
<td>295</td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>Euler Angles</td>
<td>296</td>
</tr>
<tr>
<td>4.4.2.4</td>
<td>Rotation Around an Arbitrary Zero Point Axis</td>
<td>296</td>
</tr>
<tr>
<td>4.4.2.5</td>
<td>Rotation and Quaternions</td>
<td>297</td>
</tr>
<tr>
<td>4.4.2.6</td>
<td>Quaternions and Cardan Angles</td>
<td>298</td>
</tr>
<tr>
<td>4.4.2.7</td>
<td>Efficiency of the Algorithms</td>
<td>301</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Applications of Quaternions</td>
<td>302</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>3D Rotations in Computer Graphics</td>
<td>302</td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>Interpolation by Rotation matrices</td>
<td>303</td>
</tr>
<tr>
<td>4.4.3.3</td>
<td>Stereographic Projection</td>
<td>303</td>
</tr>
<tr>
<td>4.4.3.4</td>
<td>Satellite navigation</td>
<td>304</td>
</tr>
<tr>
<td>4.4.3.5</td>
<td>Vector Analysis</td>
<td>305</td>
</tr>
<tr>
<td>4.4.3.6</td>
<td>Normalized Quaternions and Rigid Body Motion</td>
<td>306</td>
</tr>
<tr>
<td>4.5</td>
<td>Systems of Linear Equations</td>
<td>307</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Linear Systems, Pivoting</td>
<td>307</td>
</tr>
<tr>
<td>4.5.1.1</td>
<td>Linear Systems</td>
<td>307</td>
</tr>
<tr>
<td>4.5.1.2</td>
<td>Pivoting</td>
<td>307</td>
</tr>
<tr>
<td>4.5.1.3</td>
<td>Linear Dependence</td>
<td>308</td>
</tr>
<tr>
<td>4.5.1.4</td>
<td>Calculation of the Inverse of a Matrix</td>
<td>308</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Solution of Systems of Linear Equations</td>
<td>308</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Definition and Solvability</td>
<td>308</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Application of Pivoting</td>
<td>310</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Cramer’s Rule</td>
<td>311</td>
</tr>
<tr>
<td>4.5.2.4</td>
<td>Gauss’s Algorithm</td>
<td>312</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Overdetermined Linear Systems of Equations</td>
<td>313</td>
</tr>
<tr>
<td>4.5.3.1</td>
<td>Overdetermined Linear Systems of Equations and Linear Least Squares Problems</td>
<td>313</td>
</tr>
<tr>
<td>4.5.3.2</td>
<td>Suggestions for Numerical Solutions of Least Squares Problems</td>
<td>314</td>
</tr>
<tr>
<td>4.6</td>
<td>Eigenvalue Problems for Matrices</td>
<td>314</td>
</tr>
<tr>
<td>4.6.1</td>
<td>General Eigenvalue Problem</td>
<td>314</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Special Eigenvalue Problem</td>
<td>315</td>
</tr>
<tr>
<td>4.6.2.1</td>
<td>Characteristic Polynomial</td>
<td>315</td>
</tr>
<tr>
<td>4.6.2.2</td>
<td>Real Symmetric Matrices, Similarity Transformations</td>
<td>316</td>
</tr>
<tr>
<td>4.6.2.3</td>
<td>Transformation of Principal Axes of Quadratic Forms</td>
<td>317</td>
</tr>
<tr>
<td>4.6.2.4</td>
<td>Suggestions for the Numerical Calculations of Eigenvalues</td>
<td>319</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Singular Value Decomposition</td>
<td>321</td>
</tr>
<tr>
<td>5</td>
<td>Algebra and Discrete Mathematics</td>
<td>323</td>
</tr>
<tr>
<td>5.1</td>
<td>Logic</td>
<td>323</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Propositional Calculus</td>
<td>323</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Formulas in Predicate Calculus</td>
<td>326</td>
</tr>
<tr>
<td>5.2</td>
<td>Set Theory</td>
<td>327</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Concept of Set, Special Sets</td>
<td>327</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Operations with Sets</td>
<td>328</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5.4.3 Congruences and Residue Classes</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>5.4.4 Theorems of Fermat, Euler, and Wilson</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>5.4.5 Prime Number Tests</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>5.4.6 Codes</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>5.4.6.1 Control Digits</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>5.4.6.2 Error correcting codes</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>5.5 Cryptology</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>5.5.1 Problem of Cryptology</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>5.5.2 Cryptosystems</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>5.5.3 Mathematical Foundation</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>5.5.4 Security of Cryptosystems</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>5.5.4.1 Methods of Conventional Cryptography</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>5.5.4.2 Linear Substitution Ciphers</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>5.5.4.3 Vigenère Cipher</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>5.5.4.4 Matrix Substitution</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>5.5.5 Methods of Classical Cryptanalysis</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>5.5.5.1 Statistical Analysis</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>5.5.5.2 Kasiski-Friedman Test</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>5.5.6 One-Time Pad</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>5.5.7 Public Key Methods</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>5.5.7.1 Diffie-Hellman Key Exchange</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>5.5.7.2 One-Way Function</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>5.5.7.3 RSA Codes and RSA Method</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>5.5.8 DES Algorithm (Data Encryption Standard)</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>5.5.9 IDEA Algorithm (International Data Encryption Algorithm)</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>5.6 Universal Algebra</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>5.6.1 Definition</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>5.6.2 Congruence Relations, Factor Algebras</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>5.6.3 Homomorphism</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>5.6.4 Homomorphism Theorem</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>5.6.5 Varieties</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>5.6.6 Term Algebras, Free Algebras</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>5.7 Boolean Algebras and Switch Algebra</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>5.7.1 Definition</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>5.7.2 Duality Principle</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>5.7.3 Finite Boolean Algebras</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>5.7.4 Boolean Algebras as Orderings</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>5.7.5 Boolean Functions, Boolean Expressions</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>5.7.6 Normal Forms</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>5.7.7 Switch Algebra</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>5.8 Algorithms of Graph Theory</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>5.8.1 Basic Notions and Notation</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>5.8.2 Traverse of Undirected Graphs</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>5.8.2.1 Edge Sequences or Paths</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>5.8.2.2 Euler Trails</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>5.8.2.3 Hamiltonian Cycles</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>5.8.3 Trees and Spanning Trees</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>5.8.3.1 Trees</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>5.8.3.2 Spanning Trees</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>5.8.4 Matchings</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>5.8.5 Planar Graphs</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>5.8.6 Paths in Directed Graphs</td>
<td>410</td>
<td></td>
</tr>
</tbody>
</table>
5.8.7 Transport Networks .. 411
5.9 Fuzzy Logic ... 413
 5.9.1 Basic Notions of Fuzzy Logic .. 413
 5.9.1.1 Interpretation of Fuzzy Sets .. 413
 5.9.1.2 Membership Functions on the Real Line 414
 5.9.1.3 Fuzzy Sets ... 416
 5.9.2 Connections (Aggregations) of Fuzzy Sets 418
 5.9.2.1 Concepts for Aggregations of Fuzzy Sets 418
 5.9.2.2 Practical Aggregation Operations of Fuzzy Sets 419
 5.9.2.3 Compensatory Operators .. 421
 5.9.2.4 Extension Principle ... 421
 5.9.2.5 Fuzzy Complement .. 421
 5.9.3 Fuzzy-Valued Relations ... 422
 5.9.3.1 Fuzzy Relations ... 422
 5.9.3.2 Fuzzy Product Relation $R \circ S$ 424
 5.9.4 Fuzzy Inference (Approximate Reasoning) 425
 5.9.5 Defuzzification Methods .. 426
 5.9.6 Knowledge-Based Fuzzy Systems 427
 5.9.6.1 Method of Mamdani .. 427
 5.9.6.2 Method of Sugeno ... 428
 5.9.6.3 Cognitive Systems ... 428
 5.9.6.4 Knowledge-Based Interpolation Systems 430

6 Differentiation ... 432
 6.1 Differentiation of Functions of One Variable 432
 6.1.1 Differential Quotient .. 432
 6.1.2 Rules of Differentiation for Functions of One Variable 433
 6.1.2.1 Derivatives of the Elementary Functions 433
 6.1.2.2 Basic Rules of Differentiation 433
 6.1.3 Derivatives of Higher Order ... 438
 6.1.3.1 Definition of Derivatives of Higher Order 438
 6.1.3.2 Derivatives of Higher Order of some Elementary Functions 438
 6.1.3.3 Leibniz’s Formula .. 438
 6.1.3.4 Higher Derivatives of Functions Given in Parametric Form 440
 6.1.3.5 Derivatives of Higher Order of the Inverse Function 440
 6.1.4 Fundamental Theorems of Differential Calculus 441
 6.1.4.1 Monotonicity ... 441
 6.1.4.2 Fermat’s Theorem ... 441
 6.1.4.3 Rolle’s Theorem ... 441
 6.1.4.4 Mean Value Theorem of Differential Calculus 442
 6.1.4.5 Taylor’s Theorem of Functions of One Variable 442
 6.1.4.6 Generalized Mean Value Theorem of Differential Calculus (Cauchy’s Theorem) 443
 6.1.5 Determination of the Extreme Values and Inflection Points 443
 6.1.5.1 Maxima and Minima ... 443
 6.1.5.2 Necessary Conditions for the Existence of a Relative Extreme Value of a Differentiable, Explicit Function $y = f(x)$ 444
 6.1.5.3 Determination of the Relative Extreme Values and the Inflection Points of a Differentiable, Explicit Function $y = f(x)$ 444
 6.1.5.4 Determination of Absolute Extrema 445
 6.1.5.5 Determination of the Extrema of Implicit Functions 445
 6.2 Differentiation of Functions of Several Variables 445
 6.2.1 Partial Derivatives ... 445
6.2.1.1 Partial Derivative of a Function ... 445
6.2.1.2 Geometrical Meaning for Functions of Two Variables 446
6.2.1.3 Differentials of x and $f(x)$.. 446
6.2.1.4 Basic Properties of the Differential 447
6.2.1.5 Partial Differential .. 447

6.2.2 Total Differential and Differentials of Higher Order 447
6.2.2.1 Notion of Total Differential of a Function of Several Variables (Complete Differential) ... 447
6.2.2.2 Derivatives and Differentials of Higher Order 448
6.2.2.3 Taylor’s Theorem for Functions of Several Variables 449

6.2.3 Rules of Differentiation for Functions of Several Variables 450
6.2.3.1 Differentiation of Composite Functions 450
6.2.3.2 Differentiation of Implicit Functions 451

6.2.4 Substitution of Variables in Differential Expressions and Coordinate Transformations .. 452
6.2.4.1 Function of One Variable .. 452
6.2.4.2 Function of Two Variables .. 453

6.2.5 Extreme Values of Functions of Several Variables 454
6.2.5.1 Definition of a Relative Extreme Value 454
6.2.5.2 Geometric Representation ... 454
6.2.5.3 Determination of Extreme Values of Differentiable Functions of Two Variables ... 455
6.2.5.4 Determination of the Extreme Values of a Function of n Variables 455
6.2.5.5 Solution of Approximation Problems 456
6.2.5.6 Extreme Value Problem with Side Conditions 456

7 Infinite Series ... 457

7.1 Sequences of Numbers ... 457
7.1.1 Properties of Sequences of Numbers ... 457
7.1.1.1 Definition of Sequence of Numbers 457
7.1.1.2 Monotone Sequences of Numbers ... 457
7.1.1.3 Bounded Sequences of Numbers ... 457
7.1.2 Limits of Sequences of Numbers .. 458

7.2 Number Series ... 459
7.2.1 General Convergence Theorems .. 459
7.2.1.1 Convergence and Divergence of Infinite Series 459
7.2.1.2 General Theorems about the Convergence of Series 460
7.2.2 Convergence Criteria for Series with Positive Terms 460
7.2.2.1 Comparison Criterion .. 460
7.2.2.2 D’Alembert’s Ratio Test ... 461
7.2.2.3 Root Test of Cauchy .. 461
7.2.2.4 Integral Test of Cauchy .. 462

7.2.3 Absolute and Conditional Convergence 462
7.2.3.1 Definition ... 462
7.2.3.2 Properties of Absolutely Convergent Series 463
7.2.3.3 Alternating Series ... 463

7.2.4 Some Special Series ... 464
7.2.4.1 The Values of Some Important Number Series 464
7.2.4.2 Bernoulli and Euler Numbers ... 465

7.2.5 Estimation of the Remainder ... 466
7.2.5.1 Estimation with Majorant .. 466
7.2.5.2 Alternating Convergent Series .. 467
7.2.5.3 Special Series .. 467

7.3 Function Series .. 467
 7.3.1 Definitions .. 467
 7.3.2 Uniform Convergence .. 468
 7.3.2.1 Definition, Weierstrass Theorem 468
 7.3.2.2 Properties of Uniformly Convergent Series 468
 7.3.3 Power series .. 469
 7.3.3.1 Definition, Convergence 469
 7.3.3.2 Calculations with Power Series 470
 7.3.3.3 Taylor Series Expansion, Maclaurin Series 471
 7.3.4 Approximation Formulas 472
 7.3.5 Asymptotic Power Series 472
 7.3.5.1 Asymptotic Behavior 472
 7.3.5.2 Asymptotic Power Series 472

7.4 Fourier Series .. 474
 7.4.1 Trigonometric Sum and Fourier Series 474
 7.4.1.1 Basic Notions ... 474
 7.4.1.2 Most Important Properties of the Fourier Series .. 475
 7.4.2 Determination of Coefficients for Symmetric Functions 476
 7.4.2.1 Different Kinds of Symmetries 476
 7.4.2.2 Forms of the Expansion into a Fourier Series 477
 7.4.3 Determination of the Fourier Coefficients with Numerical Methods 477
 7.4.4 Fourier Series and Fourier Integrals 478
 7.4.5 Remarks on the Table of Some Fourier Expansions 479

8 Integral Calculus ... 480
 8.1 Indefinite Integrals .. 480
 8.1.1 Primitive Function or Antiderivative 480
 8.1.1.1 Indefinite Integrals 481
 8.1.1.2 Integrals of Elementary Functions 481
 8.1.2 Rules of Integration 482
 8.1.3 Integration of Rational Functions 485
 8.1.3.1 Integrals of Integer Rational Functions (Polynomials) 485
 8.1.3.2 Integrals of Fractional Rational Functions 485
 8.1.3.3 Four Cases of Partial Fraction Decomposition 485
 8.1.4 Integration of Irrational Functions 488
 8.1.4.1 Substitution to Reduce to Integration of Rational Functions 488
 8.1.4.2 Integration of Binomial Integrands 489
 8.1.4.3 Elliptic Integrals 490
 8.1.5 Integration of Trigonometric Functions 491
 8.1.5.1 Substitution .. 491
 8.1.5.2 Simplified Methods 491
 8.1.6 Integration of Further Transcendental Functions 492
 8.1.6.1 Integrals with Exponential Functions 492
 8.1.6.2 Integrals with Hyperbolic Functions 493
 8.1.6.3 Application of Integration by Parts 493
 8.1.6.4 Integrals of Transcendental Functions 493
 8.2 Definite Integrals .. 493
 8.2.1 Basic Notions, Rules and Theorems 493
 8.2.1.1 Definition and Existence of the Definite Integral 493
 8.2.1.2 Properties of Definite Integrals 494
 8.2.1.3 Further Theorems about the Limits of Integration 496
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1.4</td>
<td>Evaluation of the Definite Integral</td>
<td>498</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Applications of Definite Integrals</td>
<td>500</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>General Principle for Applications of the Definite Integral</td>
<td>500</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Applications in Geometry</td>
<td>501</td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>Applications in Mechanics and Physics</td>
<td>504</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Improper Integrals, Stieltjes and Lebesgue Integrals</td>
<td>506</td>
</tr>
<tr>
<td>8.2.3.1</td>
<td>Generalization of the Notion of the Integral</td>
<td>506</td>
</tr>
<tr>
<td>8.2.3.2</td>
<td>Integrals with Infinite Integration Limits</td>
<td>507</td>
</tr>
<tr>
<td>8.2.3.3</td>
<td>Integrals with Unbounded Integrand</td>
<td>509</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Parametric Integrals</td>
<td>512</td>
</tr>
<tr>
<td>8.2.4.1</td>
<td>Definition of Parametric Integrals</td>
<td>512</td>
</tr>
<tr>
<td>8.2.4.2</td>
<td>Differentiation Under the Symbol of Integration</td>
<td>512</td>
</tr>
<tr>
<td>8.2.4.3</td>
<td>Integration Under the Symbol of Integration</td>
<td>512</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Integration by Series Expansion, Special Non-Elementary Functions</td>
<td>513</td>
</tr>
<tr>
<td>8.3</td>
<td>Line Integrals</td>
<td>515</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Line Integrals of the First Type</td>
<td>516</td>
</tr>
<tr>
<td>8.3.1.1</td>
<td>Definitions</td>
<td>516</td>
</tr>
<tr>
<td>8.3.1.2</td>
<td>Existence Theorem</td>
<td>516</td>
</tr>
<tr>
<td>8.3.1.3</td>
<td>Evaluation of the Line Integral of the First Type</td>
<td>516</td>
</tr>
<tr>
<td>8.3.1.4</td>
<td>Application of the Line Integral of the First Type</td>
<td>517</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Line Integrals of the Second Type</td>
<td>517</td>
</tr>
<tr>
<td>8.3.2.1</td>
<td>Definitions</td>
<td>517</td>
</tr>
<tr>
<td>8.3.2.2</td>
<td>Existence Theorem</td>
<td>519</td>
</tr>
<tr>
<td>8.3.2.3</td>
<td>Calculation of the Line Integral of the Second Type</td>
<td>519</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Line Integrals of General Type</td>
<td>519</td>
</tr>
<tr>
<td>8.3.3.1</td>
<td>Definition</td>
<td>519</td>
</tr>
<tr>
<td>8.3.3.2</td>
<td>Properties of the Line Integral of General Type</td>
<td>520</td>
</tr>
<tr>
<td>8.3.3.3</td>
<td>Integral Along a Closed Curve</td>
<td>521</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Independence of the Line Integral of the Path of Integration</td>
<td>521</td>
</tr>
<tr>
<td>8.3.4.1</td>
<td>Two-Dimensional Case</td>
<td>521</td>
</tr>
<tr>
<td>8.3.4.2</td>
<td>Existence of a Primitive Function</td>
<td>521</td>
</tr>
<tr>
<td>8.3.4.3</td>
<td>Three-Dimensional Case</td>
<td>522</td>
</tr>
<tr>
<td>8.3.4.4</td>
<td>Determination of the Primitive Function</td>
<td>522</td>
</tr>
<tr>
<td>8.3.4.5</td>
<td>Zero-Valued Integral Along a Closed Curve</td>
<td>523</td>
</tr>
<tr>
<td>8.4</td>
<td>Multiple Integrals</td>
<td>523</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Double Integrals</td>
<td>524</td>
</tr>
<tr>
<td>8.4.1.1</td>
<td>Notion of the Double Integral</td>
<td>524</td>
</tr>
<tr>
<td>8.4.1.2</td>
<td>Evaluation of the Double Integral</td>
<td>524</td>
</tr>
<tr>
<td>8.4.1.3</td>
<td>Applications of the Double Integral</td>
<td>527</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Triple Integrals</td>
<td>527</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Notion of the Triple Integral</td>
<td>527</td>
</tr>
<tr>
<td>8.4.2.2</td>
<td>Evaluation of the Triple Integral</td>
<td>529</td>
</tr>
<tr>
<td>8.4.2.3</td>
<td>Applications of the Triple Integral</td>
<td>531</td>
</tr>
<tr>
<td>8.5</td>
<td>Surface Integrals</td>
<td>532</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Surface Integral of the First Type</td>
<td>532</td>
</tr>
<tr>
<td>8.5.1.1</td>
<td>Notion of the Surface Integral of the First Type</td>
<td>532</td>
</tr>
<tr>
<td>8.5.1.2</td>
<td>Evaluation of the Surface Integral of the First Type</td>
<td>533</td>
</tr>
<tr>
<td>8.5.1.3</td>
<td>Applications of the Surface Integral of the First Type</td>
<td>535</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Surface Integral of the Second Type</td>
<td>535</td>
</tr>
<tr>
<td>8.5.2.1</td>
<td>Notion of the Surface Integral of the Second Type</td>
<td>535</td>
</tr>
<tr>
<td>8.5.2.2</td>
<td>Evaluation of Surface Integrals of the Second Type</td>
<td>537</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Surface Integral in General Form</td>
<td>537</td>
</tr>
</tbody>
</table>
9 Differential Equations

9.1 Ordinary Differential Equations

9.1.1 First-Order Differential Equations

9.1.1.1 Existence Theorems, Direction Field

9.1.1.2 Important Solution Methods

9.1.1.3 Implicit Differential Equations

9.1.1.4 Singular Integrals and Singular Points

9.1.1.5 Approximation Methods for Solution of First-Order Differential Equations

9.1.2 Differential Equations of Higher Order and Systems of Differential Equations

9.1.2.1 Basic Results

9.1.2.2 Lowering the Order

9.1.2.3 Linear n-th Order Differential Equations

9.1.2.4 Solution of Linear Differential Equations with Constant Coefficients

9.1.2.5 Systems of Linear Differential Equations with Constant Coefficients

9.1.2.6 Linear Second-Order Differential Equations

9.1.3 Boundary Value Problems

9.1.3.1 Problem Formulation

9.1.3.2 Fundamental Properties of Eigenfunctions and Eigenvalues

9.1.3.3 Expansion in Eigenfunctions

9.1.3.4 Singular Cases

9.2 Partial Differential Equations

9.2.1 First-Order Partial Differential Equations

9.2.1.1 Linear First-Order Partial Differential Equations

9.2.1.2 Non-Linear First-Order Partial Differential Equations

9.2.2 Linear Second-Order Partial Differential Equations

9.2.2.1 Classification and Properties of Second-Order Differential Equations with Two Independent Variables

9.2.2.2 Classification and Properties of Linear Second-Order Differential Equations with more than two Independent Variables

9.2.2.3 Integration Methods for Linear Second-Order Partial Differential Equations

9.2.3 Some further Partial Differential Equations From Natural Sciences and Engineering

9.2.3.1 Formulation of the Problem and the Boundary Conditions

9.2.3.2 Wave Equation

9.2.3.3 Heat Conduction and Diffusion Equation for Homogeneous Media

9.2.3.4 Potential Equation

9.2.4 Schroedinger’s Equation

9.2.4.1 Notion of the Schroedinger Equation

9.2.4.2 Time-Dependent Schroedinger Equation

9.2.4.3 Time-Independent Schroedinger Equation

9.2.4.4 Statistical Interpretation of the Wave Function

9.2.4.5 Force-Free Motion of a Particle in a Block

9.2.4.6 Particle Movement in a Symmetric Central Field (see 13.1.2.2, p. 702)

9.2.4.7 Linear Harmonic Oscillator

9.2.5 Non-Linear Partial Differential Equations: Solitons, Periodic Patterns, Chaos

9.2.5.1 Formulation of the Physical-Mathematical Problem

9.2.5.2 Korteweg de Vries Equation (KdV)
11.5.2 Singular Integral Equation with Cauchy Kernel

- 11.5.2.1 Formulation of the Problem
- 11.5.2.2 Existence of a Solution
- 11.5.2.3 Properties of Cauchy Type Integrals
- 11.5.2.4 The Hilbert Boundary Value Problem
- 11.5.2.5 Solution of the Hilbert Boundary Value Problem (in short: Hilbert Problem)
- 11.5.2.6 Solution of the Characteristic Integral Equation

12 Functional Analysis

12.1 Vector Spaces
- 12.1.1 Notion of a Vector Space
- 12.1.2 Linear and Affine Linear Subsets
- 12.1.3 Linearly Independent Elements
- 12.1.4 Convex Subsets and the Convex Hull
 - 12.1.4.1 Convex Sets
 - 12.1.4.2 Cones
- 12.1.5 Linear Operators and Functionals
 - 12.1.5.1 Mappings
 - 12.1.5.2 Homomorphism and Endomorphism
 - 12.1.5.3 Isomorphic Vector Spaces
- 12.1.6 Complexification of Real Vector Spaces

12.2 Metric Spaces
- 12.2.1 Notion of a Metric Space
 - 12.2.1.1 Balls, Neighborhoods and Open Sets
 - 12.2.1.2 Convergence of Sequences in Metric Spaces
 - 12.2.1.3 Closed Sets and Closure
 - 12.2.1.4 Dense Subsets and Separable Metric Spaces
- 12.2.2 Complete Metric Spaces
 - 12.2.2.1 Cauchy Sequences
 - 12.2.2.2 Complete Metric Spaces
 - 12.2.2.3 Some Fundamental Theorems in Complete Metric Spaces
 - 12.2.2.4 Some Applications of the Contraction Mapping Principle
 - 12.2.2.5 Completion of a Metric Space
- 12.2.3 Continuous Operators

12.3 Normed Spaces
- 12.3.1 Notion of a Normed Space
 - 12.3.1.1 Axioms of a Normed Space
 - 12.3.1.2 Some Properties of Normed Spaces
- 12.3.2 Banach Spaces
 - 12.3.2.1 Series in Normed Spaces
 - 12.3.2.2 Examples of Banach Spaces
 - 12.3.2.3 Sobolev Spaces
- 12.3.3 Ordered Normed Spaces
- 12.3.4 Normed Algebras

12.4 Hilbert Spaces
- 12.4.1 Notion of a Hilbert Space
12.9.2 Measurable Functions

12.9.2.1 Measurable Function

12.9.2.2 Properties of the Class of Measurable Functions

12.9.3 Integration

12.9.3.1 Definition of the Integral

12.9.3.2 Some Properties of the Integral

12.9.3.3 Convergence Theorems

12.9.4 L^p Spaces

12.9.5 Distributions

12.9.5.1 Formula of Partial Integration

12.9.5.2 Generalized Derivative

12.9.5.3 Distributions

12.9.5.4 Derivative of a Distribution

13 Vector Analysis and Vector Fields

13.1 Basic Notions of the Theory of Vector Fields

13.1.1 Vector Functions of a Scalar Variable

13.1.1.1 Definitions

13.1.1.2 Derivative of a Vector Function

13.1.1.3 Rules of Differentiation for Vectors

13.1.1.4 Taylor Expansion for Vector Functions

13.1.2 Scalar Fields

13.1.2.1 Scalar Field or Scalar Point Function

13.1.2.2 Important Special Cases of Scalar Fields

13.1.2.3 Coordinate Representation of Scalar Fields

13.1.2.4 Level Surfaces and Level Lines of a Field

13.1.3 Vector Fields

13.1.3.1 Vector Field or Vector Point Function

13.1.3.2 Important Cases of Vector Fields

13.1.3.3 Coordinate Representation of Vector Fields

13.1.3.4 Transformation of Coordinate Systems

13.1.3.5 Vector Lines

13.2 Differential Operators of Space

13.2.1 Directional and Space Derivatives

13.2.1.1 Directional Derivative of a Scalar Field

13.2.1.2 Directional Derivative of a Vector Field

13.2.1.3 Volume Derivative

13.2.2 Gradient of a Scalar Field

13.2.2.1 Definition of the Gradient

13.2.2.2 Gradient and Directional Derivative

13.2.2.3 Gradient and Volume Derivative

13.2.2.4 Further Properties of the Gradient

13.2.2.5 Gradient of the Scalar Field in Different Coordinates

13.2.2.6 Rules of Calculations

13.2.3 Vector Gradient

13.2.4 Divergence of Vector Fields

13.2.4.1 Definition of Divergence

13.2.4.2 Divergence in Different Coordinates

13.2.4.3 Rules for Evaluation of the Divergence

13.2.4.4 Divergence of a Central Field

13.2.5 Rotation of Vector Fields

13.2.5.1 Definitions of the Rotation
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.1.4 Differentiability of a Complex Function</td>
<td>731</td>
</tr>
<tr>
<td>14.1.2 Analytic Functions</td>
<td>732</td>
</tr>
<tr>
<td>14.1.2.1 Definition of Analytic Functions</td>
<td>732</td>
</tr>
<tr>
<td>14.1.2.2 Examples of Analytic Functions</td>
<td>732</td>
</tr>
<tr>
<td>14.1.2.3 Properties of Analytic Functions</td>
<td>732</td>
</tr>
<tr>
<td>14.1.2.4 Singular Points</td>
<td>733</td>
</tr>
<tr>
<td>14.1.3 Conformal Mapping</td>
<td>734</td>
</tr>
<tr>
<td>14.1.3.1 Notion and Properties of Conformal Mappings</td>
<td>734</td>
</tr>
<tr>
<td>14.1.3.2 Simplest Conformal Mappings</td>
<td>735</td>
</tr>
<tr>
<td>14.1.3.3 Schwarz Reflection Principle</td>
<td>741</td>
</tr>
<tr>
<td>14.1.3.4 Complex Potential</td>
<td>741</td>
</tr>
<tr>
<td>14.1.3.5 Superposition Principle</td>
<td>744</td>
</tr>
<tr>
<td>14.1.3.6 Arbitrary Mappings of the Complex Plane</td>
<td>745</td>
</tr>
<tr>
<td>14.2 Integration in the Complex Plane</td>
<td>745</td>
</tr>
<tr>
<td>14.2.1 Definite and Indefinite Integral</td>
<td>745</td>
</tr>
<tr>
<td>14.2.1.1 Definition of the Integral in the Complex Plane</td>
<td>745</td>
</tr>
<tr>
<td>14.2.1.2 Properties and Evaluation of Complex Integrals</td>
<td>746</td>
</tr>
<tr>
<td>14.2.2 Cauchy Integral Theorem</td>
<td>747</td>
</tr>
<tr>
<td>14.2.2.1 Cauchy Integral Theorem for Simply Connected Domains</td>
<td>747</td>
</tr>
<tr>
<td>14.2.2.2 Cauchy Integral Theorem for Multiply Connected Domains</td>
<td>748</td>
</tr>
<tr>
<td>14.2.3 Cauchy Integral Formulas</td>
<td>748</td>
</tr>
<tr>
<td>14.2.3.1 Analytic Function on the Interior of a Domain</td>
<td>748</td>
</tr>
<tr>
<td>14.2.3.2 Analytic Function on the Exterior of a Domain</td>
<td>749</td>
</tr>
<tr>
<td>14.3 Power Series Expansion of Analytic Functions</td>
<td>749</td>
</tr>
<tr>
<td>14.3.1 Convergence of Series with Complex Terms</td>
<td>749</td>
</tr>
<tr>
<td>14.3.1.1 Convergence of a Number Sequence with Complex Terms</td>
<td>749</td>
</tr>
<tr>
<td>14.3.1.2 Convergence of an Infinite Series with Complex Terms</td>
<td>749</td>
</tr>
<tr>
<td>14.3.1.3 Power Series with Complex Terms</td>
<td>750</td>
</tr>
<tr>
<td>14.3.2 Taylor Series</td>
<td>751</td>
</tr>
<tr>
<td>14.3.3 Principle of Analytic Continuation</td>
<td>751</td>
</tr>
<tr>
<td>14.3.4 Laurent Expansion</td>
<td>752</td>
</tr>
<tr>
<td>14.3.5 Isolated Singular Points and the Residue Theorem</td>
<td>752</td>
</tr>
<tr>
<td>14.3.5.1 Isolated Singular Points</td>
<td>752</td>
</tr>
<tr>
<td>14.3.5.2 Meromorphic Functions</td>
<td>753</td>
</tr>
<tr>
<td>14.3.5.3 Elliptic Functions</td>
<td>753</td>
</tr>
<tr>
<td>14.3.5.4 Residue</td>
<td>753</td>
</tr>
<tr>
<td>14.3.5.5 Residue Theorem</td>
<td>754</td>
</tr>
<tr>
<td>14.4 Evaluation of Real Integrals by Complex Integrals</td>
<td>754</td>
</tr>
<tr>
<td>14.4.1 Application of Cauchy Integral Formulas</td>
<td>754</td>
</tr>
<tr>
<td>14.4.2 Application of the Residue Theorem</td>
<td>755</td>
</tr>
<tr>
<td>14.4.3 Application of the Jordan Lemma</td>
<td>755</td>
</tr>
<tr>
<td>14.4.3.1 Jordan Lemma</td>
<td>755</td>
</tr>
<tr>
<td>14.4.3.2 Examples of the Jordan Lemma</td>
<td>756</td>
</tr>
<tr>
<td>14.5 Algebraic and Elementary Transcendental Functions</td>
<td>758</td>
</tr>
<tr>
<td>14.5.1 Algebraic Functions</td>
<td>758</td>
</tr>
<tr>
<td>14.5.2 Elementary Transcendental Functions</td>
<td>758</td>
</tr>
<tr>
<td>14.5.3 Description of Curves in Complex Form</td>
<td>760</td>
</tr>
<tr>
<td>14.6 Elliptic Functions</td>
<td>762</td>
</tr>
<tr>
<td>14.6.1 Relation to Elliptic Integrals</td>
<td>762</td>
</tr>
<tr>
<td>14.6.2 Jacobian Functions</td>
<td>763</td>
</tr>
<tr>
<td>14.6.3 Theta Functions</td>
<td>764</td>
</tr>
<tr>
<td>14.6.4 Weierstrass Functions</td>
<td>765</td>
</tr>
</tbody>
</table>
15 Integral Transformations

15.1 Notion of Integral Transformation
 15.1.1 General Definition of Integral Transformations
 15.1.2 Special Integral Transformations
 15.1.3 Inverse Transformations
 15.1.4 Linearity of Integral Transformations
 15.1.5 Integral transformations for functions of several variables
 15.1.6 Applications of Integral Transformations

15.2 Laplace Transformation
 15.2.1 Properties of the Laplace Transformation
 15.2.1.1 Laplace Transformation, Original and Image Space
 15.2.1.2 Rules for the Evaluation of the Laplace Transformation
 15.2.1.3 Transforms of Special Functions
 15.2.1.4 Dirac δ Function and Distributions
 15.2.2 Inverse Transformation into the Original Space
 15.2.2.1 Inverse Transformation with the Help of Tables
 15.2.2.2 Partial Fraction Decomposition
 15.2.2.3 Series Expansion
 15.2.2.4 Inverse Integral
 15.2.3 Solution of Differential Equations using Laplace Transformation
 15.2.3.1 Ordinary Linear Differential Equations with Constant Coefficients
 15.2.3.2 Ordinary Linear Differential Equations with Coefficients Depending on the Variable
 15.2.3.3 Partial Differential Equations

15.3 Fourier Transformation
 15.3.1 Properties of the Fourier Transformation
 15.3.1.1 Fourier Integral
 15.3.1.2 Fourier Transformation and Inverse Transformation
 15.3.1.3 Rules of Calculation with the Fourier Transformation
 15.3.1.4 Transforms of Special Functions
 15.3.2 Solution of Differential Equations using the Fourier Transformation
 15.3.2.1 Ordinary Linear Differential Equations
 15.3.2.2 Partial Differential Equations

15.4 Z-Transformation
 15.4.1 Properties of the Z-Transformation
 15.4.1.1 Discrete Functions
 15.4.1.2 Definition of the Z-Transformation
 15.4.1.3 Rules of Calculations
 15.4.1.4 Relation to the Laplace Transformation
 15.4.1.5 Inverse of the Z-Transformation
 15.4.2 Applications of the Z-Transformation
 15.4.2.1 General Solution of Linear Difference Equations
 15.4.2.2 Second-Order Difference Equations (Initial Value Problem)
 15.4.2.3 Second-Order Difference Equations (Boundary Value Problem)

15.5 Wavelet Transformation
 15.5.1 Signals
 15.5.2 Wavelets
 15.5.3 Wavelet Transformation
 15.5.4 Discrete Wavelet Transformation
 15.5.4.1 Fast Wavelet Transformation
 15.5.4.2 Discrete Haar Wavelet Transformation
 15.5.5 Gabor Transformation
16.3.4.2 Linear Regression for two Measurable Characters

Page 841

16.3.4.3 Multidimensional Regression

Page 842

16.3.5 Monte Carlo Methods

Page 843

16.3.5.1 Simulation

Page 843

16.3.5.2 Random Numbers

Page 843

16.3.5.3 Example of a Monte Carlo Simulation

Page 845

16.3.5.4 Application of the Monte Carlo Method in Numerical Mathematics

Page 845

16.3.5.5 Further Applications of the Monte Carlo Method

Page 847

16.4 Calculus of Errors

Page 848

16.4.1 Measurement Error and its Distribution

Page 848

16.4.1.1 Qualitative Characterization of Measurement Errors

Page 848

16.4.1.2 Density Function of the Measurement Error

Page 848

16.4.1.3 Quantitative Characterization of the Measurement Error

Page 850

16.4.1.4 Determining the Result of a Measurement with Bounds on the Error

Page 853

16.4.1.5 Error Estimation for Direct Measurements with the Same Accuracy

Page 853

16.4.1.6 Error Estimation for Direct Measurements with Different Accuracy

Page 854

16.4.2 Error Propagation and Error Analysis

Page 854

16.4.2.1 Gauss Error Propagation Law

Page 855

16.4.2.2 Error Analysis

Page 856

17 Dynamical Systems and Chaos

Page 857

17.1 Ordinary Differential Equations and Mappings

Page 857

17.1.1 Dynamical Systems

Page 857

17.1.1.1 Basic Notions

Page 857

17.1.1.2 Invariant Sets

Page 859

17.1.2 Qualitative Theory of Ordinary Differential Equations

Page 860

17.1.2.1 Existence of Flows, Phase Space Structure

Page 860

17.1.2.2 Linear Differential Equations

Page 861

17.1.2.3 Stability Theory

Page 863

17.1.2.4 Invariant Manifolds

Page 866

17.1.2.5 Poincaré Mapping

Page 868

17.1.2.6 Topological Equivalence of Differential Equations

Page 870

17.1.3 Discrete Dynamical Systems

Page 871

17.1.3.1 Steady States, Periodic Orbits and Limit Sets

Page 871

17.1.3.2 Invariant Manifolds

Page 872

17.1.3.3 Topological Conjugation of Discrete Systems

Page 873

17.1.4 Structural Stability (Robustness)

Page 873

17.1.4.1 Structurally Stable Differential Equations

Page 873

17.1.4.2 Structurally Stable Time Discrete Systems

Page 874

17.1.4.3 Generic Properties

Page 874

17.2 Quantitative Description of Attractors

Page 876

17.2.1 Probability Measures on Attractors

Page 876

17.2.1.1 Invariant Measure

Page 876

17.2.1.2 Elements of Ergodic Theory

Page 877

17.2.2 Entropies

Page 879

17.2.2.1 Topological Entropy

Page 879

17.2.2.2 Metric Entropy

Page 879

17.2.3 Lyapunov Exponents

Page 880

17.2.4 Dimensions

Page 882

17.2.4.1 Metric Dimensions

Page 882

17.2.4.2 Dimensions Defined by Invariant Measures

Page 884

17.2.4.3 Local Hausdorff Dimension According to Douady and Oesterlé

Page 886
17.2.4.4 Examples of Attractors
- Strange Attractors and Chaos
- Chaos in One-Dimensional Mappings
- Reconstruction of Dynamics from Time Series
 - Foundations, Reconstruction with Basic Properties
 - Reconstructions with Prevalent Properties

17.2.5 Strange Attractors and Chaos

17.2.6 Chaos in One-Dimensional Mappings

17.2.7 Reconstruction of Dynamics from Time Series
 - Foundations, Reconstruction with Basic Properties
 - Reconstructions with Prevalent Properties

17.3 Bifurcation Theory and Routes to Chaos
- Bifurcations in Morse-Smale Systems
 - Local Bifurcations in Neighborhoods of Steady States
 - Local Bifurcations in a Neighborhood of a Periodic Orbit
 - Global Bifurcation
- Transitions to Chaos
 - Cascade of Period Doublings
 - Intermittency
 - Global Homoclinic Bifurcations
 - Destruction of a Torus

18 Optimization

18.1 Linear Programming
- Formulation of the Problem and Geometrical Representation
- The Form of a Linear Programming Problem
- Examples and Graphical Solutions
- Basic Notions of Linear Programming, Normal Form
 - Extreme Points and Basis
 - Normal Form of the Linear Programming Problem
- Simplex Method
 - Simplex Tableau
 - Transition to the New Simplex Tableau
 - Determination of an Initial Simplex Tableau
 - Revised Simplex Method
 - Duality in Linear Programming
- Special Linear Programming Problems
 - Transportation Problem
 - Assignment Problem
 - Distribution Problem
 - Travelling Salesman
 - Scheduling Problem

18.2 Non-linear Optimization
- Formulation of the Problem, Theoretical Basis
- Formulation of the Problem
- Optimality Conditions
- Duality in Optimization
- Special Non-linear Optimization Problems
- Convex Optimization
- Quadratic Optimization
- Solution Methods for Quadratic Optimization Problems
 - Wolfe’s Method
 - Hildreth-d’Esopo Method
- Numerical Search Procedures
 - One-Dimensional Search
 - Minimum Search in \(n \)-Dimensional Euclidean Vector Space
- Methods for Unconstrained Problems
20.2 Patterns
- Functional Operations .. 1032
- Programming .. 1034
- Supplement about Syntax, Information, Messages
 - Contexts, Attributes 1035
 - Information .. 1035
 - Messages ... 1035

20.3 Important Applications with Mathematica
- Manipulation of Algebraic Expressions
 - Multiplication of Expressions 1036
 - Factorization of Polynomials 1037
 - Operations with Polynomials 1037
 - Partial Fraction Decomposition 1037
 - Manipulation of Non-Polynomial Expressions 1038
- Solution of Equations and Systems of Equations
 - Equations as Logical Expressions 1038
 - Solution of Polynomial Equations 1039
 - Solution of Transcendental Equations 1039
 - Solution of Systems of Equations 1040
- Linear Systems of Equations and Eigenvalue Problems
- Differential and Integral Calculus
 - Calculation of Derivatives 1042
 - Indefinite Integrals .. 1043
 - Definite Integrals and Multiple Integrals 1044
 - Solution of Differential Equations 1044

20.4 Graphics with Mathematica
- Basic Elements of Graphics 1045
- Graphics Primitives .. 1046
- Graphical Options .. 1047
- Syntax of Graphical Representation 1047
 - Building Graphic Objects 1047
 - Graphical Representation of Functions 1048
 - Exponential Functions 1049
 - Function $y = x + \text{Arccoth } x$ 1049
 - Bessel Functions (see 9.1.2.6, 2., p. 562) 1050
- Parametric Representation of Curves 1050
- Representation of Surfaces and Space Curves 1051
 - Graphical Representation of Surfaces 1051
 - Options for 3D Graphics 1051
 - Three-Dimensional Objects in Parametric Representation 1051

21 Tables
- Frequently Used Mathematical Constants 1053
- Important Natural Constants 1053
- Metric Prefixes ... 1054
- International System of Physical Units (SI Units) 1055
- Important Series Expansions 1057
- Fourier Series .. 1062
- Indefinite Integrals ... 1065
 - Integral Rational Functions 1065
 - Integrals with $X = ax + b$ 1065
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.7.1.2 Integrals with $X = ax^2 + bx + c$</td>
<td>1067</td>
</tr>
<tr>
<td>21.7.1.3 Integrals with $X = a^2 + x^2$</td>
<td>1068</td>
</tr>
<tr>
<td>21.7.1.4 Integrals with $X = a^3 + x^2$</td>
<td>1070</td>
</tr>
<tr>
<td>21.7.1.5 Integrals with $X = a^4 + x^4$</td>
<td>1071</td>
</tr>
<tr>
<td>21.7.1.6 Integrals with $X = a^4 - x^4$</td>
<td>1071</td>
</tr>
<tr>
<td>21.7.1.7 Some Cases of Partial Fraction Decomposition</td>
<td>1071</td>
</tr>
<tr>
<td>21.7.2 Integrals of Irrational Functions</td>
<td></td>
</tr>
<tr>
<td>21.7.2.1 Integrals with \sqrt{x} and $a^2 \pm b^2 x$</td>
<td>1072</td>
</tr>
<tr>
<td>21.7.2.2 Other Integrals with \sqrt{x}</td>
<td>1072</td>
</tr>
<tr>
<td>21.7.2.3 Integrals with $\sqrt{ax + b}$</td>
<td>1073</td>
</tr>
<tr>
<td>21.7.2.4 Integrals with $\sqrt{ax + b}$ and $\sqrt{fx + g}$</td>
<td>1074</td>
</tr>
<tr>
<td>21.7.2.5 Integrals with $\sqrt{a^2 - x^2}$</td>
<td>1075</td>
</tr>
<tr>
<td>21.7.2.6 Integrals with $\sqrt{x^2 + a^2}$</td>
<td>1076</td>
</tr>
<tr>
<td>21.7.2.7 Integrals with $\sqrt{x^2 - a^2}$</td>
<td>1078</td>
</tr>
<tr>
<td>21.7.2.8 Integrals with $\sqrt{ax^2 + bx + c}$</td>
<td>1080</td>
</tr>
<tr>
<td>21.7.2.9 Integrals with other Irrational Expressions</td>
<td>1082</td>
</tr>
<tr>
<td>21.7.2.10 Recursion Formulas for an Integral with Binomial Differential</td>
<td>1082</td>
</tr>
<tr>
<td>21.7.3 Integrals of Trigonometric Functions</td>
<td></td>
</tr>
<tr>
<td>21.7.3.1 Integrals with Sine Function</td>
<td>1083</td>
</tr>
<tr>
<td>21.7.3.2 Integrals with Cosine Function</td>
<td>1085</td>
</tr>
<tr>
<td>21.7.3.3 Integrals with Sine and Cosine Function</td>
<td>1087</td>
</tr>
<tr>
<td>21.7.3.4 Integrals with Tangent Function</td>
<td>1091</td>
</tr>
<tr>
<td>21.7.3.5 Integrals with Cotangent Function</td>
<td>1091</td>
</tr>
<tr>
<td>21.7.4 Integrals of other Transcendental Functions</td>
<td></td>
</tr>
<tr>
<td>21.7.4.1 Integrals with Hyperbolic Functions</td>
<td>1092</td>
</tr>
<tr>
<td>21.7.4.2 Integrals with Exponential Functions</td>
<td>1093</td>
</tr>
<tr>
<td>21.7.4.3 Integrals with Logarithmic Functions</td>
<td>1095</td>
</tr>
<tr>
<td>21.7.4.4 Integrals with Inverse Trigonometric Functions</td>
<td>1096</td>
</tr>
<tr>
<td>21.7.4.5 Integrals with Inverse Hyperbolic Functions</td>
<td>1097</td>
</tr>
<tr>
<td>21.8 Definite Integrals</td>
<td></td>
</tr>
<tr>
<td>21.8.1 Definite Integrals of Trigonometric Functions</td>
<td>1098</td>
</tr>
<tr>
<td>21.8.2 Definite Integrals of Exponential Functions</td>
<td>1099</td>
</tr>
<tr>
<td>21.8.3 Definite Integrals of Logarithmic Functions</td>
<td>1100</td>
</tr>
<tr>
<td>21.8.4 Definite Integrals of Algebraic Functions</td>
<td>1101</td>
</tr>
<tr>
<td>21.9 Elliptic Integrals</td>
<td></td>
</tr>
<tr>
<td>21.9.1 Elliptic Integral of the First Kind $F(\varphi, k), k = \sin \alpha$</td>
<td></td>
</tr>
<tr>
<td>21.9.2 Elliptic Integral of the Second Kind $E(\varphi, k), k = \sin \alpha$</td>
<td></td>
</tr>
<tr>
<td>21.9.3 Complete Elliptic Integral, $k = \sin \alpha$</td>
<td>1104</td>
</tr>
<tr>
<td>21.10 Gamma Function</td>
<td></td>
</tr>
<tr>
<td>21.11 Bessel Functions (Cylindrical Functions)</td>
<td>1106</td>
</tr>
<tr>
<td>21.12 Legendre Polynomials of the First Kind</td>
<td>1108</td>
</tr>
<tr>
<td>21.13 Laplace Transformation</td>
<td>1109</td>
</tr>
<tr>
<td>21.14 Fourier Transformation</td>
<td></td>
</tr>
<tr>
<td>21.14.1 Fourier Cosine Transformation</td>
<td>1114</td>
</tr>
<tr>
<td>21.14.2 Fourier Sine Transformation</td>
<td>1120</td>
</tr>
<tr>
<td>21.14.3 Fourier Transformation</td>
<td>1125</td>
</tr>
<tr>
<td>21.14.4 Exponential Fourier Transformation</td>
<td>1127</td>
</tr>
<tr>
<td>21.15 Z Transformation</td>
<td></td>
</tr>
<tr>
<td>21.16 Poisson Distribution</td>
<td>1131</td>
</tr>
<tr>
<td>21.17 Standard Normal Distribution</td>
<td>1133</td>
</tr>
<tr>
<td>21.17.1 Standard Normal Distribution for $0.00 \leq x \leq 1.99$</td>
<td>1133</td>
</tr>
</tbody>
</table>
21.17.2 Standard Normal Distribution for $2.00 \leq x \leq 3.90$ 1134
21.18 χ^2 Distribution ... 1135
21.19 Fisher F Distribution .. 1136
21.20 Student t Distribution ... 1138
21.21 Random Numbers .. 1139

22 Bibliography 1140

Index 1152

Mathematic Symbols A
Handbook of Mathematics
Bronshstein, I.N.; Semendyayev, K.A.; Musiol, G.; Mühlig, H.
ISBN: 978-3-662-46220-1