Contents

1 Hydrogen Bonding Motifs: New Progresses 1
 Dan-Wei Zhang, Hui Wang and Zhan-Ting Li
 1.1 Hydrogen Bonding: The Basic Aspects 1
 1.1.1 Definition .. 1
 1.1.2 Hydrogen Bonding Donors and Acceptors 2
 1.1.3 The Strength of the Hydrogen Bond 3
 1.1.4 Hydrogen Bonding Formed by a Single Functional
 Group .. 5
 1.2 Intramolecular Hydrogen Bonding 13
 1.2.1 The O–H···X Hydrogen Bonding 13
 1.2.2 The N–H···X Hydrogen Bonding 14
 1.3 Intermolecular Hydrogen Bonding 24
 1.3.1 Double Hydrogen Bonding 24
 1.3.2 Triple Hydrogen Bonding 25
 1.3.3 Quadruple Hydrogen Bonding 27
 1.4 Conclusion .. 33
 References .. 34

2 Understanding of Noncovalent Interactions Involving Organic
 Fluorine .. 37
 Piyush Panini and Deepak Chopra
 2.1 Introduction .. 37
 2.1.1 Why Fluorine Is So Special? 39
 2.2 Debate on Participation of Fluorine as a Hydrogen Bond
 Donor: Overview of the Weak X–H···F–C; X = N, O, C
 Hydrogen Bond ... 40
 2.3 Inputs from Other Interactions Involving Organic Fluorine ... 53
 2.3.1 Insight into Halogen–Halogen Interactions Involving
 Fluorine ... 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Insights into Halogen Bond Formation Involving Fluorine (C–F⋯X; X = Halogen, N, O, S)</td>
<td>57</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusions</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>Hydrogen Bonding in Supramolecular Crystal Engineering</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>Crystal Engineering Strategies</td>
<td>71</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Supramolecular Synthons and Retrosynthesis</td>
<td>71</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Reticular Synthesis</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Hydrogen Bonding</td>
<td>73</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Definition and Scopes</td>
<td>73</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Description of Hydrogen Bonding Motifs: The Graph Sets</td>
<td>74</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Hydrogen Bonding Rules</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Interpenetration</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>Hydrogen Bonding Structures</td>
<td>77</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Discrete Hydrogen Bonding Capsules</td>
<td>77</td>
</tr>
<tr>
<td>3.5.2</td>
<td>1D Infinite Hydrogen Bonding Nanotubes</td>
<td>84</td>
</tr>
<tr>
<td>3.5.3</td>
<td>2D and 3D Borromean Arrayed Organic Crystals</td>
<td>90</td>
</tr>
<tr>
<td>3.5.4</td>
<td>2D → 3D Parallel Polycatenated Structures</td>
<td>93</td>
</tr>
<tr>
<td>3.5.5</td>
<td>3D Interpenetrated dia and pcu Frameworks</td>
<td>95</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Unusual Aggregation Phase of Water Molecules</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>Applications</td>
<td>99</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Crystal Engineering of Solid State Photochemical Reactions</td>
<td>99</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Gas Adsorption and Separation</td>
<td>103</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Crystal Engineering of Pharmaceutical Cocrystals</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>4</td>
<td>Hydrogen Bonding-Mediated Self-assembly of Aromatic Supramolecular Duplexes</td>
<td>115</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>Oligoamide-Based Molecular Duplex Strands</td>
<td>116</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Oligoamide-Based Molecular Duplex Strands</td>
<td>116</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Applications</td>
<td>118</td>
</tr>
<tr>
<td>4.3</td>
<td>Oligohydrazide-Based Molecular Duplex Strands</td>
<td>122</td>
</tr>
<tr>
<td>4.3.1</td>
<td>From Supramolecular Zipper to Quadruple Hydrogen-Bonded Heterodimer</td>
<td>123</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Strict Self-complementary Oligohydrazide-Based Duplexes</td>
<td>124</td>
</tr>
</tbody>
</table>
4.3.3 Shuttle Movement ... 125
4.3.4 Mutual Responsive Low Molecular Mass Organic
Gelators .. 127
4.3.5 Supramolecular Substitution 127
4.3.6 Amide-Urea-Based Molecular Duplexes 128
4.3.7 “Hao” Templated Molecular Duplex 131
4.4 “Covalent Casting” Strategy-Based Molecular Duplexes 131
4.5 Other Molecular Duplex Strands 133
4.6 Conclusions and Outlook 135
References ... 135

5 Hydrogen Bonding-Driven Anion Recognition 137
Liping Cao, Jie Zhao, Dong Yang, Xiao-Juan Yang and Biao Wu
5.1 Introduction .. 137
5.2 Amide-Based Anion Recognition 138
5.3 Urea-Based Anion Recognition 149
5.4 Pyrrole-Based Anion Recognition 164
5.5 CH Donor-Based Anion Recognition 175
5.6 OH-Based Anion Recognition 178
5.7 Conclusion .. 181
References ... 181

6 Formation of Hydrogen-Bonded Self-assembled Structures
in Polar Solvents ... 187
Supratim Banerjee and Carsten Schmuck
6.1 Introduction .. 187
6.2 Nucleobase Pairing and Nanostructure Formation in Water ... 188
6.3 Self-sorting/Orthogonal Self-assembly 193
6.4 Supramolecular Polymers 201
6.5 Supramolecular Gels in Aqueous and Polar Organic Media ... 207
6.6 Vesicles, Bilayers, Micelles Through H-Bonding 214
References ... 224

7 Hydrogen Bonded Capsules: Chemistry in Small Spaces 227
Li Juan Liu and Julius Rebek Jr
7.1 Why Study Encapsulated Molecules? 227
7.2 The Capsules and Their Contents 228
7.2.1 The Tennis Ball ... 228
7.2.2 The Softball ... 230
7.2.3 A Cylindrical Capsule 231
7.2.4 The Volleyball ... 231
7.3 What’s It Like Inside the Capsules? 232
7.4 How Do Molecules Get In and Out of the Capsules? 234
7.5 Amplified Intermolecular Forces 235
7.6 Arrangements in Encapsulation Space:
7.6.1 Social Isomers .. 237
7.6.2 Single Molecule Solvation 239
7.6.3 Isotope Effects .. 239
7.6.4 Constellations ... 240
7.6.5 Diastereomers ... 242
7.7 Chiral Spaces .. 243
7.8 Reactivity .. 245
7.9 Conclusion .. 246
References ... 247

8 Hydrogen Bonded Organic Nanotubes ... 249
Jun-Li Hou
8.1 Introduction ... 249
8.2 Strategies for the Construction of Hydrogen Bonding-Driven
Organic Nanotubes .. 250
8.3 Nanotubes from Hydrogen Bonding-Induced Helical
Structures .. 251
8.4 Nanotubes from Tubular Molecules 254
8.5 Nanotubes from Hydrogen Bonded Rod-like
Molecular Units .. 256
8.6 Nanotubes from Hydrogen Bonded Cyclic Molecules 258
8.6.1 Nanotubes from Hydrogen Bonded Cyclic Peptides ... 258
8.6.2 Nanotubes from Hydrogen Bonded Cyclic Ureas 261
8.7 Nanotubes from Hydrogen Bonded Wedge- or Sector-like
Molecules ... 262
8.8 Conclusions and Outlooks 265
References ... 265

9 H-Bonding-Assisted One-Pot Macrocyclization for Rapid
Construction of H-Bonded Macrocyclic Aromatic Foldamers 269
Huaqiang Zeng
9.1 Introduction ... 269
9.2 Concept Formulation ... 271
9.3 Aryl Amide Macrocycles .. 274
9.3.1 Non-fivefold Symmetric Aryl Amide Macrocycles 274
9.3.2 Fivefold Symmetric Aryl Amide Macrocycles 277
9.3.3 Highly Selective Production of Strained Aromatic
Hexamers ... 288
9.3.4 Chemo- and Regio-Selective Demethylations 292
9.4 Macrocycles Containing Non-amide Linkages 293
9.5 Mechanism of One-Pot Macrocyclization 297
 9.5.1 Variable Functionalizations Around the Pentameric Periphery 298
 9.5.2 A Chain-Growth Mechanism Underlying the Formation of Aromatic Pentamers 302
 9.5.3 A Non-chain Growth Mechanism Underlying the Formation of Strained Aromatic Hexamers and Heptamers 311
9.6 Conclusion 316
References 317

10 Hydrogen-Bonded Supramolecular Polymers 321
Chen Lin, Tangxin Xiao and Leyong Wang
10.1 Introduction 321
10.2 Hydrogen-Bonding Building Blocks 323
10.3 Hydrogen-Bonded Main-Chain Supramolecular Polymers Constructed by Low-Molecular-Weight Monomers 327
10.4 Hydrogen-Bonded Supramolecular Polymers Constructed by High-Molecular-Weight Conventional Polymers that Are Functionalized by Hydrogen-Bonded Motifs 334
 10.4.1 Telechelic Supramolecular Polymers 334
 10.4.2 “Side-Chain” Supramolecular Polymer Networks 337
10.5 Supramolecular Polymers Constructed by Orthogonal Hydrogen Bonding-Driven Self-assembly and Other Non-covalent Interactions 340
10.6 Conclusions 348
References 349
Hydrogen Bonded Supramolecular Structures
Li, Z.; Wu, L.-Z. (Eds.)
2015, XI, 350 p. 356 illus., 272 illus. in color., Hardcover
ISBN: 978-3-662-45755-9