Contents

1 Maglev Train Overview ... 1
 1.1 Introduction .. 1
 1.2 Characteristics and Classification of Maglev Train 2
 1.3 Research and Major Achievements in the World 5
 1.4 Research and Major Achievements in China 7
 1.5 Development and Discussion of Maglev Key Technologies 9
 1.5.1 Low-Speed Maglev Trains .. 9
 1.5.2 High-Speed Maglev Trains 11
 1.6 Technology Characteristics of High-Speed Maglev Train 13
 1.6.1 Technology Characteristics .. 13
 1.6.2 Suspension and Guidance System 14
 1.6.3 Long Stator Synchronous Linear Motor Traction 14
 1.6.4 Braking .. 15
 1.6.5 Vehicle–Rail Relationship ... 16
 1.6.6 Power Supply for Onboard Devices 17
 1.6.7 Positioning and Mobile Communication 17
 1.6.8 Overall Design Ideas of TR High-Speed Maglev Train 18
 1.7 Technology Characteristics of Low-Speed Maglev Train 20
 1.7.1 Suspension and Guidance Function Realization of Low-Speed Maglev Train ... 21
 1.7.2 Traction Function Realization of HSST Maglev Train 21
 1.7.3 Bogie Structure of HSST Maglev Train 23
 1.7.4 Technology Characteristics .. 23
 1.8 Conclusion .. 24
References .. 26

2 Technology Development and Application Research of Maglev Control ... 29
 2.1 Introduction .. 29
 2.2 Suspension Control Plan of Maglev Train 30
 2.2.1 Single Electromagnet Suspension Control Scheme 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2</td>
<td>Module Suspension Control Scheme</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Concentrated Suspension Control Scheme</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Overlapping Suspension Control Scheme</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Suspension Control Algorithms of Maglev Train</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Basic Requirements of Suspension Control Algorithms</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Suspension Control Methods of Maglev Train</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusion</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>37</td>
</tr>
</tbody>
</table>

3 Modeling and Controller Design of Suspension System of Maglev Train .. 41

3.1 Introduction ... 41

3.2 Building Single-Point Suspension Model.............................. 41

3.2.1 Elastic Track Model .. 42

3.2.2 Single-Point Suspension Model................................ 45

3.3 Design of Control System .. 46

3.3.1 Analysis of Model Linearization and Open-Loop Stability… 46

3.3.2 Particularity of Vehicle–Track Coupling 48

3.3.3 Design of the Suspension Controller Ignoring Track Motion ... 49

3.3.4 Design of Controller Under Relative Static Hypothesis of Electromagnet... 53

3.3.5 Stability Analysis of Integrated Closed-Loop System and System Simulation .. 55

3.4 Optimization of Control Parameters Under the Condition of Output Saturation .. 58

3.4.1 Analysis of Output Saturation Link of the Suspension Controller ... 58

3.4.2 Design of Optimization of Control Parameters............. 59

3.4.3 System Simulation Considering the Output Saturation Link 63

3.5 Design of Signal Filter of Suspension Control System 64

3.5.1 Design of Gap Signal Filter .. 65

3.5.2 Design of Acceleration Signal Filter 70

3.5.3 The Delay Influence of Gap Low-Pass Filter on Suspension Control ... 75

3.6 Experimental Research ... 82

3.6.1 Signal Test of Gap Channel .. 83

3.6.2 Signal Test of Acceleration Channel 85

3.7 Conclusion .. 86

References ... 87

4 Control and Diagnosis System of Maglev Train 89

4.1 Introduction ... 89

4.2 Onboard Control and Diagnosis System 89

4.2.1 Functional Requirements and System Composition 89
4.2.2 Data Communication Network of the Control and Diagnosis System .. 92
4.2.3 Hierarchy of Onboard Diagnosis System .. 93

4.3 Comprehensive Assessment Algorithm of Onboard Faults Based on Fuzzy Comprehensive Assessment .. 94
4.3.1 Modeling Principle for Fuzzy Comprehensive Assessment of Faults ... 95
4.3.2 Building of Multilevel Fuzzy Comprehensive Assessment Model for Maglev Train System Faults 99
4.3.3 Application and Analysis of Fuzzy Comprehensive Assessment of Maglev Train System Faults 101

4.4 Comprehensive Assessment Method Based on EDA .. 104
4.4.1 Questions ... 104
4.4.2 Basic Theory of the Estimation of Distribution Algorithm ... 105
4.4.3 Comprehensive Assessment of Maglev Train Faults Based on EDA ... 107
4.4.4 Performance Test and Comparison .. 111

4.5 Conclusion .. 117

References .. 118

5 Maglev Train Control and Diagnosis Networks .. 121
5.1 Introduction ... 121
5.1.1 Diagnosis Network .. 123
5.1.2 Control Network .. 124

5.2 Communication Simulation of Onboard Diagnosis Network 126
5.2.1 Modeling and Simulation of Diagnosis Network 127
5.2.2 Simulation Results .. 131

5.3 Integrated Network Design of the Control and Diagnosis Networks ... 136
5.3.1 Necessity of the Integrated Network for Control and Diagnosis Networks 136
5.3.2 Comparison of Mainstream Train Communication Networks ... 137
5.3.3 Architecture of System Bus of Vehicle Unit Based on CANOpen... 139
5.3.4 CANOpen Vehicle-Level Network Devices Classification 141
5.3.5 Node Device Description and Performance Analysis 143

5.4 Diagnosis Network Based on ADS .. 148
5.4.1 Design of Diagnosis System in Maglev Train 148
5.4.2 Design Principles .. 151
5.4.3 Design Plan .. 152
5.4.4 Diagnosis Method .. 155

5.5 Control and Diagnosis Networks Based on Role Automation Decentralization 159
5.5.1 Relation of Control and Diagnosis Networks 159
5.5.2 The Concept of RoADS .. 161
5.5.3 Design Principles ... 164
5.5.4 Design Plan ... 166
5.6 Onboard Communication Platform in Maglev Train
 Based on RTLinux .. 170
 5.6.1 RTLinux Introduction .. 170
 5.6.2 Design Plan ... 170
 5.6.3 Driver Design of CPCI-CAN Card 175
 5.6.4 Real-Time Performance Analysis 177
5.7 Conclusion .. 179
References ... 180

6 The Position and Speed Detection Technology Based
 on Loop Cable for Low-Speed Maglev Train 183
 6.1 Introduction ... 183
 6.2 Position and Speed Detection Based on the XOR Pulse 185
 6.2.1 The Electromagnetic Field Analysis of Loop Cable 185
 6.2.2 Detection of Component of Magnetic Flux Density 189
 6.3 Design of Receiving Coil ... 192
 6.3.1 Selection of Resonance Circuit 192
 6.3.2 Design of Coil Structure 193
 6.4 Signal Processing Methods .. 195
 6.4.1 Signal Processing Method Based on Amplitude Detection 196
 6.4.2 Signal Processing Method Based on Phase Detection 198
 6.4.3 Comparison of Two Signal Processing Methods 201
 6.5 System Design and Implementation 204
 6.5.1 Design of Analog Circuit 205
 6.5.2 Design of Digital Circuit 209
 6.5.3 Design of Power Drive 210
 6.5.4 Test of Position and Speed Detection
 of Low-Speed Maglev Train 211
 6.6 Conclusion .. 212
References ... 215
Maglev Trains
Key Underlying Technologies
Liu, Z.; Long, Z.; Li, X.
2015, XII, 215 p. 132 illus., 38 illus. in color., Hardcover
ISBN: 978-3-662-45672-9