Contents

1 **Introduction** ... 1
 1.1 Introduction ... 1
 1.2 The History of INS/CNS/GNSS Navigation 2
 1.3 The Current Status of INS/CNS/GNSS Navigation Development . . . 4
 1.3.1 INS/GNSS Navigation 4
 1.3.2 INS/CNS Navigation 4
 1.3.3 INS/CNS/GNSS Navigation 5
 References ... 8

2 **Principle of INS/CNS/GNSS Navigation System** 9
 2.1 Introduction ... 9
 2.2 Coordinate Frames and Earth Reference Model Commonly Used in Navigation ... 9
 2.2.1 The Coordinate Frames Used in Navigation 9
 2.2.2 The Conversion of Coordinate Systems 13
 2.2.3 Earth Reference Model 15
 2.3 Inertial Navigation System 21
 2.3.1 Work Principle of Inertial Navigation System 21
 2.3.2 SINS System Error Equation and Error Propagation Characteristics ... 23
 2.4 Satellite Navigation System 30
 2.4.1 Operating Principle of Satellite Navigation System 31
 2.4.2 Analysis of Error Characteristics for Satellite Navigation System .. 33
 2.5 Celestial Navigation System 35
 2.5.1 Autonomous Celestial Positioning Principle 36
 2.5.2 Celestial Attitude Determination Principle 45
 2.5.3 Star Sensor in CNS and Analysis of Its Error Characteristics 47
 2.6 Conclusion .. 52
 References ... 52
3 Filters in Navigation System .. 55
 3.1 Foreword ... 55
 3.2 Kalman Filter ... 56
 3.3 EKF .. 58
 3.3.1 Mathematical Description of Stochastic Nonlinear System 58
 3.3.2 Discrete EKF .. 59
 3.4 UKF .. 61
 3.5 PF .. 63
 3.6 Unscented Particle Filter (UPF) 66
 3.7 Predictive Filtering 67
 3.8 Federated Filter .. 70
 3.8.1 Structure of Federated Filter 70
 3.8.2 Fusion Algorithm 71
 3.9 Conclusion .. 73

References ... 74

4 Error Modeling, Calibration, and Compensation of Inertial
 Measurement Unit (IMU) .. 77
 4.1 Introduction ... 77
 4.2 Error Modeling and Compensation of Inertial Sensors 78
 4.2.1 Error Model of Gyroscopes 78
 4.2.2 Scale Factor Error Modeling of Gyroscope 80
 4.2.3 Temperature Error Modeling of Gyroscope 87
 4.2.4 Design, Error Calibration, and Compensation of IMU 92
 4.2.5 The Optimization Six-Position Hybrid Calibration for SINS 106
 4.2.6 Integrated Calibration Method for RLG IMU Using
 a Hybrid Analytic/Kalman Filter Approach 111
 4.2.7 Temperature Error Modeling of IMU Based on Neural
 Network .. 120
 4.3 High Dynamic Strapdown Inertial Algorithm 127
 4.3.1 Error Analysis and Gyro Biases Calibration of Analytic
 Coarse Alignment for Airborne POS 128
 4.3.2 Conical Motion Analysis and Evaluation Criteria for
 Conical Error Compensation Algorithm 135
 4.3.3 An Improved Single-Subsample Rotating Vector Attitude
 Algorithm .. 137
 4.4 Chapter Conclusion ... 146

References ... 147

5 Star Map Processing Algorithm of Star Sensor and Autonomous
 Celestial Navigation .. 151
 5.1 Introduction ... 151
 5.2 Star Map Preprocessing Method for Star Sensors 151
 5.2.1 Problem Statements 152
 5.2.2 Blurred Star Image De-noising 154
5.2.3 Blurred Star Image Restoration .. 156
5.2.4 Results and Analysis ... 158
5.2.5 Conclusions ... 164
5.3 Star Map Identification Method of Star Sensor 166
5.3.1 Introduction ... 166
5.3.2 Star Recognition Method Based on AAC Algorithm 167
5.3.3 Hybrid Simulation Result and Analysis 173
5.3.4 Conclusions ... 176
5.4 Celestial Navigation Method Based on Star Sensor and
Semi-physical Simulation Verification 177
5.4.1 Introduction ... 177
5.4.2 Celestial Navigation Measurements and Orbit Dynamic
Model ... 179
5.4.3 UKF Information Fusion Algorithm 182
5.4.4 Simulation Results ... 185
5.4.5 Conclusions ... 187
5.5 Chapter Conclusion ... 188
References ... 189

6 INS/GNSS Integrated Navigation Method 191
6.1 Introduction ... 191
6.2 Principle of Inertial/Satellite Integrated Navigation 192
6.2.1 Combination Mode of Inertial/Satellite Integrated
Navigation ... 192
6.2.2 Basic Principle for Inertial/Satellite Integrated Navigation ... 193
6.3.1 Linear Modeling Method of Inertial/Satellite Integrated
Navigation System Based on the Φ Angle 196
6.3.2 Nonlinear Modeling Method of the Inertial/Satellite
Integrated Navigation System Based on Quaternion Error .. 199
6.4 High-Precision Inertial/Satellite Integrated Navigation Method ... 206
6.4.1 Inertial/Satellite Integrated Navigation Method Based on
Mixed Correction .. 206
6.4.2 Self-Adaptive Feedback Correction Filter Method Based
on Observability Normalization Processing Method 210
6.4.3 Inertial/Satellite Outlier-Resistant Integrated Navigation
Method Based on Kalman Filtering Innovation
Orthogonality ... 213
6.4.4 An Air Maneuvering Alignment Method Based on
Observability Analysis and Lever Arm Error Compensation 220
6.4.5 SINS/GPS Integrated Estimation Method Based on
Unscented R–T–S Smoothing .. 225
6.5 Conclusion ... 238
References ... 239
7 INS/CNS Integrated Navigation Method .. 243
 7.1 Introduction .. 243
 7.2 Basic Principle of Inertial/Celestial Integrated Navigation 244
 7.2.1 Operating Mode of the Inertial/Celestial Integrated Navigation System 244
 7.2.2 Combination Mode of Inertial/Celestial Integrated Navigation System 246
 7.2.3 Principle of Inertial Component Error Correction Based on Celestial Measurement Information 248
 7.3 Modeling Method of Inertial/Celestial Integrated Navigation System ... 249
 7.3.1 State Equation of Inertial/Celestial Integrated Navigation System 249
 7.3.2 Measurement Equation of Inertial/Celestial Integrated Navigation System 252
 7.4 New Inertial/Celestial Integrated Navigation Method of Ballistic Missile .. 252
 7.4.1 Principle for Initial Position Error Correction of Missile Launching Point Based on Celestial Measurement Information 252
 7.4.2 Inertial/Celestial Integrated Navigation Method of Ballistic Missile Based on UKF 254
 7.5 Inertial/Celestial Integrated Navigation Method of Lunar Vehicle .. 257
 7.5.1 Strapdown Inertial Navigation Method of Lunar Vehicle 258
 7.5.2 A Lunar Inertial/Celestial Integrated Navigation Method Based on UPF 259
 7.6 Inertial/Celestial Integrated Attitude Determination Method of Satellite ... 263
 7.6.1 Satellite Attitude Determination System Equation 264
 7.6.2 An Inertial/Celestial Integrated Attitude Determination Method of Piecewise Information Fusion Based on EKF 266
 7.6.3 Method of Minimum Parameter Attitude Matrix Estimation of Satellite Based on UKF 270
 7.6.4 Interlaced Optimal-REQUEST and Unscented Kalman Filtering for Attitude Determination 276
 7.7 Conclusion ... 283
References .. 283

8 INS/CNS/GNSS Integrated Navigation Method .. 287
 8.1 Introduction .. 287
 8.2 Principle of INS/CNS/GNSS Integrated Navigation 288
 8.2.1 Basic Principle of INS/CNS/GNSS Integrated Navigation 288
 8.2.2 Combination Mode of INS/CNS/GNSS Integrated Navigation 288
 8.2.3 Modeling of INS/CNS/GNSS Integrated Navigation System 293
8.3 INS/CNS/GNSS Integrated Navigation Method Based on Federated UKF ... 295
8.4 Federated Filtering INS/CNS/GNSS Integrated Navigation Method Based on the Optimized Information Distribution Factor ... 299
 8.4.1 Federated Filtering Equation and Information Distribution Process ... 299
 8.4.2 Federated Filtering INS/CNS/GNSS Integrated Navigation Method Based On Information Distribution Factor Optimization .. 301
 8.4.3 Research on FKF Method Based on an Improved Genetic Algorithm for INS/CNS/GNSS Integrated Navigation System .. 302
8.5 Conclusions ... 310
8.6 Chapter Conclusion ... 312
References .. 312

9 Study for Real-Time Ability of INS/CNS/GNSS Integrated Navigation Method ... 315
 9.1 Introduction .. 315
 9.2 Piecewise Constant System (PWCS) Observability Analysis Theory and Method ... 316
 9.2.1 Observability Analysis Theory of the PWCS 316
 9.2.2 An Improved System State Degree of Observability Analysis Method Based on Singular Value Decomposition . 321
 9.3 Dimensionality Reduction Filter Design of INS/CNS Integrated Navigation System Based on the Improved Degree of Observability Analysis ... 323
 9.3.1 Degree of Observability Analysis of Full-Order Model of the SINS/CNS Integrated Navigation System 324
 9.3.2 Dimensionality Reduction Model Design of the SINS/CNS Navigation System .. 325
 9.3.3 Computer Simulation Verification 326
 9.4 Dimensionality Reduction Filter Design of INS/GNSS Integrated Navigation System Based on the Improved Degree of Observability Analysis ... 326
 9.4.1 Degree of Observability Analysis of the SINS/GNSS Integrated Navigation System 328
 9.4.2 Dimensionality Reduction Design of the SINS/GNSS Integrated Navigation System 328
 9.4.3 Computer Simulation Verification 329
 9.5 Federated Filter Design of the INS/CNS/GNSS Integrated Navigation System Based on Dimensionality Reduction Filtering 330
 9.5.1 SINS/CNS/GNSS Integrated Navigation System Model Based on Federated Filtering 330
 9.5.2 Computer Simulation Verification 334
10 Semi-physical Simulation Technology of INS/CNS/GNSS Integrated Navigation ... 339
 10.1 Introduction .. 339
 10.2.2 Composition of Semi-Physical Simulation System of INS/CNS/GNSS Integrated Navigation 342
 10.3 Realization and Test of Semi-Physical Simulation System of INS/CNS/GNSS Integrated Navigation 355
 10.3.1 Realization of Semi-physical Simulation System of SINS/CNS/GNSS Integrated Navigation 358
 10.3.2 Experiments of Semi-physical Simulation System of INS/CNS/GNSS Integrated Navigation 367
 10.4 Conclusion .. 369
References ... 369

11 Prospects of INS/CNS/GNSS Integrated Navigation Technology ... 371
 11.1 Introduction .. 371
 11.2 Development and Prospect of Integrated Navigation Technology ... 371
 11.2.1 Accurate Modeling Techniques of the INS/CNS/GNSS Navigation System .. 371
 11.2.2 Information Fusion of the INS/CNS/GNSS Navigation System and the Advanced Filtering Method 372
 11.2.3 INS/CNS/GNSS Navigation Method Based on Advanced Control Theory ... 373
 11.2.4 Integrated Inertial/Celestial/Satellite Navigation System Technology Based on Integration 377
 11.2.5 Applications of the Inertial/Celestial/Satellite Navigation Technology ... 378
 11.3 Conclusion .. 378
References ... 379