Contents

1 Introduction ... 1
 1.1 Introduction ... 1
 1.2 The History of INS/CNS/GNSS Navigation 2
 1.3 The Current Status of INS/CNS/GNSS Navigation Development . . . 4
 1.3.1 INS/GNSS Navigation 4
 1.3.2 INS/CNS Navigation 5
 1.3.3 INS/CNS/GNSS Navigation 6
References ... 8

2 Principle of INS/CNS/GNSS Navigation System 9
 2.1 Introduction ... 9
 2.2 Coordinate Frames and Earth Reference Model Commonly Used in Navigation .. 9
 2.2.1 The Coordinate Frames Used in Navigation 9
 2.2.2 The Conversion of Coordinate Systems 13
 2.2.3 Earth Reference Model 15
 2.3 Inertial Navigation System 21
 2.3.1 Work Principle of Inertial Navigation System 21
 2.3.2 SINS System Error Equation and Error Propagation Characteristics .. 23
 2.4 Satellite Navigation System 30
 2.4.1 Operating Principle of Satellite Navigation System 31
 2.4.2 Analysis of Error Characteristics for Satellite Navigation System .. 33
 2.5 Celestial Navigation System 35
 2.5.1 Autonomous Celestial Positioning Principle 36
 2.5.2 Celestial Attitude Determination Principle 45
 2.5.3 Star Sensor in CNS and Analysis of Its Error Characteristics 47
 2.6 Conclusion .. 52
References ... 52
3 Filters in Navigation System

3.1 Foreword ... 55
3.2 Kalman Filter .. 56
3.3 EKF .. 58
 3.3.1 Mathematical Description of Stochastic Nonlinear System . 58
 3.3.2 Discrete EKF ... 59
3.4 UKF ... 61
3.5 PF ... 63
3.6 Unscented Particle Filter (UPF) 66
3.7 Predictive Filtering .. 67
3.8 Federated Filter ... 70
 3.8.1 Structure of Federated Filter 70
 3.8.2 Fusion Algorithm 71
3.9 Conclusion .. 73
References .. 74

4 Error Modeling, Calibration, and Compensation of Inertial Measurement Unit (IMU) ... 77
4.1 Introduction .. 77
4.2 Error Modeling and Compensation of Inertial Sensors 78
 4.2.1 Error Model of Gyroscopes 78
 4.2.2 Scale Factor Error Modeling of Gyroscope 80
 4.2.3 Temperature Error Modeling of Gyroscope 87
 4.2.4 Design, Error Calibration, and Compensation of IMU 92
 4.2.5 The Optimization Six-Position Hybrid Calibration for SINS. 106
 4.2.6 Integrated Calibration Method for RLG IMU Using a Hybrid Analytic/Kalman Filter Approach 111
 4.2.7 Temperature Error Modeling of IMU Based on Neural Network .. 120
4.3 High Dynamic Strapdown Inertial Algorithm 127
 4.3.1 Error Analysis and Gyro Biases Calibration of Analytic Coarse Alignment for Airborne POS 128
 4.3.2 Conical Motion Analysis and Evaluation Criteria for Conical Error Compensation Algorithm 135
 4.3.3 An Improved Single-Subsample Rotating Vector Attitude Algorithm ... 137
4.4 Chapter Conclusion ... 146
References .. 147

5 Star Map Processing Algorithm of Star Sensor and Autonomous Celestial Navigation ... 151
5.1 Introduction ... 151
5.2 Star Map Preprocessing Method for Star Sensors 151
 5.2.1 Problem Statements 152
 5.2.2 Blurred Star Image De-noising 154
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3 Blurred Star Image Restoration</td>
<td>156</td>
</tr>
<tr>
<td>5.2.4 Results and Analysis</td>
<td>158</td>
</tr>
<tr>
<td>5.2.5 Conclusions</td>
<td>164</td>
</tr>
<tr>
<td>5.3 Star Map Identification Method of Star Sensor</td>
<td>166</td>
</tr>
<tr>
<td>5.3.1 Introduction</td>
<td>166</td>
</tr>
<tr>
<td>5.3.2 Star Recognition Method Based on AAC Algorithm</td>
<td>167</td>
</tr>
<tr>
<td>5.3.3 Hybrid Simulation Result and Analysis</td>
<td>173</td>
</tr>
<tr>
<td>5.3.4 Conclusions</td>
<td>176</td>
</tr>
<tr>
<td>5.4 Celestial Navigation Method Based on Star Sensor and Semi-physical Simulation Verification</td>
<td>177</td>
</tr>
<tr>
<td>5.4.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>5.4.2 Celestial Navigation Measurements and Orbit Dynamic Model</td>
<td>179</td>
</tr>
<tr>
<td>5.4.3 UKF Information Fusion Algorithm</td>
<td>182</td>
</tr>
<tr>
<td>5.4.4 Simulation Results</td>
<td>185</td>
</tr>
<tr>
<td>5.4.5 Conclusions</td>
<td>187</td>
</tr>
<tr>
<td>5.5 Chapter Conclusion</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
<tr>
<td>6 INS/GNSS Integrated Navigation Method</td>
<td>191</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>6.2 Principle of Inertial/Satellite Integrated Navigation</td>
<td>192</td>
</tr>
<tr>
<td>6.2.1 Combination Mode of Inertial/Satellite Integrated Navigation</td>
<td>192</td>
</tr>
<tr>
<td>6.2.2 Basic Principle for Inertial/Satellite Integrated Navigation</td>
<td>193</td>
</tr>
<tr>
<td>6.3.1 Linear Modeling Method of Inertial/Satellite Integrated Navigation System Based on the Φ Angle</td>
<td>196</td>
</tr>
<tr>
<td>6.3.2 Nonlinear Modeling Method of the Inertial/Satellite Integrated Navigation System Based on Quaternion Error</td>
<td>199</td>
</tr>
<tr>
<td>6.4 High-Precision Inertial/Satellite Integrated Navigation Method</td>
<td>206</td>
</tr>
<tr>
<td>6.4.1 Inertial/Satellite Integrated Navigation Method Based on Mixed Correction</td>
<td>206</td>
</tr>
<tr>
<td>6.4.2 Self-Adaptive Feedback Correction Filter Method Based on Observability Normalization Processing Method</td>
<td>210</td>
</tr>
<tr>
<td>6.4.3 Inertial/Satellite Outlier-Resistant Integrated Navigation Method Based on Kalman Filtering Innovation Orthogonality</td>
<td>213</td>
</tr>
<tr>
<td>6.4.4 An Air Maneuvering Alignment Method Based on Observability Analysis and Lever Arm Error Compensation</td>
<td>220</td>
</tr>
<tr>
<td>6.4.5 SINS/GPS Integrated Estimation Method Based on Unscented R–T–S Smoothing</td>
<td>225</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>238</td>
</tr>
<tr>
<td>References</td>
<td>239</td>
</tr>
</tbody>
</table>
7 INS/CNS Integrated Navigation Method .. 243
 7.1 Introduction .. 243
 7.2 Basic Principle of Inertial/Celestial Integrated Navigation 244
 7.2.1 Operating Mode of the Inertial/Celestial Integrated Navigation System 244
 7.2.2 Combination Mode of Inertial/Celestial Integrated Navigation System 246
 7.2.3 Principle of Inertial Component Error Correction Based on Celestial Measurement Information ... 248
 7.3 Modeling Method of Inertial/Celestial Integrated Navigation System 249
 7.3.1 State Equation of Inertial/Celestial Integrated Navigation System 249
 7.3.2 Measurement Equation of Inertial/Celestial Integrated Navigation System ... 252
 7.4 New Inertial/Celestial Integrated Navigation Method of Ballistic Missile 252
 7.4.1 Principle for Initial Position Error Correction of Missile Launching Point Based on Celestial Measurement Information ... 252
 7.4.2 Inertial/Celestial Integrated Navigation Method of Ballistic Missile Based on UKF ... 254
 7.5 Inertial/Celestial Integrated Navigation Method of Lunar Vehicle 257
 7.5.1 Strapdown Inertial Navigation Method of Lunar Vehicle 258
 7.5.2 A Lunar Inertial/Celestial Integrated Navigation Method Based on UPF 259
 7.6 Inertial/Celestial Integrated Attitude Determination Method of Satellite 263
 7.6.1 Satellite Attitude Determination System Equation 264
 7.6.2 An Inertia/Celestial Integrated Attitude Determination Method of Piecewise Information Fusion Based on EKF 266
 7.6.3 Method of Minimum Parameter Attitude Matrix Estimation of Satellite Based on UKF ... 270
 7.6.4 Interlaced Optimal-REQUEST and Unscented Kalman Filtering for Attitude Determination ... 276
 7.7 Conclusion .. 283
References ... 283

8 INS/CNS/GNSS Integrated Navigation Method .. 287
 8.1 Introduction .. 287
 8.2 Principle of INS/CNS/GNSS Integrated Navigation .. 288
 8.2.1 Basic Principle of INS/CNS/GNSS Integrated Navigation 288
 8.2.2 Combination Mode of INS/CNS/GNSS Integrated Navigation 288
 8.3 Modeling of INS/CNS/GNSS Integrated Navigation System 293
8.3 INS/CNS/GNSS Integrated Navigation Method Based on Federated UKF .. 295
8.4 Federated Filtering INS/CNS/GNSS Integrated Navigation Method Based on the Optimized Information Distribution Factor 299
8.4.1 Federated Filtering Equation and Information Distribution Process .. 299
8.4.2 Federated Filtering INS/CNS/GNSS Integrated Navigation Method Based On Information Distribution Factor Optimization 301
8.4.3 Research on FKF Method Based on an Improved Genetic Algorithm for INS/CNS/GNSS Integrated Navigation System .. 302
8.5 Conclusions ... 310
8.6 Chapter Conclusion ... 312
References ... 312

9 Study for Real-Time Ability of INS/CNS/GNSS Integrated Navigation Method ... 315
9.1 Introduction ... 315
9.2 Piecewise Constant System (PWCS) Observability Analysis Theory and Method ... 316
9.2.1 Observability Analysis Theory of the PWCS 316
9.2.2 An Improved System State Degree of Observability Analysis Method Based on Singular Value Decomposition ... 321
9.3 Dimensionality Reduction Filter Design of INS/CNS Integrated Navigation System Based on the Improved Degree of Observability Analysis ... 323
9.3.1 Degree of Observability Analysis of Full-Order Model of the SINS/CNS Integrated Navigation System 324
9.3.2 Dimensionality Reduction Model Design of the SINS/CNS Navigation System ... 325
9.3.3 Computer Simulation Verification 326
9.4 Dimensionality Reduction Filter Design of INS/GNSS Integrated Navigation System Based on the Improved Degree of Observability Analysis ... 326
9.4.1 Degree of Observability Analysis of the SINS/GNSS Integrated Navigation System ... 328
9.4.2 Dimensionality Reduction Design of the SINS/GNSS Integrated Navigation System ... 328
9.4.3 Computer Simulation Verification 329
9.5 Federated Filter Design of the INS/CNS/GNSS Integrated Navigation System Based on Dimensionality Reduction Filtering 330
9.5.1 SINS/CNS/GNSS Integrated Navigation System Model Based on Federated Filtering ... 330
9.5.2 Computer Simulation Verification 334
10 Semi-physical Simulation Technology of INS/CNS/GNSS Integrated Navigation

10.1 Introduction ... 339
10.2 Principle and Composition of Semi-Physical Simulation System of INS/CNS/GNSS Integrated Navigation 340
 10.2.2 Composition of Semi-Physical Simulation System of INS/CNS/GNSS Integrated Navigation 342
10.3 Realization and Test of Semi-Physical Simulation System of INS/CNS/GNSS Integrated Navigation 355
 10.3.1 Realization of Semi-physical Simulation System of SINS/CNS/GNSS Integrated Navigation 358
 10.3.2 Experiments of Semi-physical Simulation System of INS/CNS/GNSS Integrated Navigation 367
10.4 Conclusion .. 369

References .. 369

11 Prospects of INS/CNS/GNSS Integrated Navigation Technology 371

11.1 Introduction ... 371
11.2 Development and Prospect of Integrated Navigation Technology . 371
 11.2.1 Accurate Modeling Techniques of the INS/CNS/GNSS Navigation System 371
 11.2.2 Information Fusion of the INS/CNS/GNSS Navigation System and the Advanced Filtering Method 372
 11.2.3 INS/CNS/GNSS Navigation Method Based on Advanced Control Theory 373
 11.2.4 Integrated Inertial/Celestial/Satellite Navigation System Technology Based on Integration 377
 11.2.5 Applications of the Inertial/Celestial/Satellite Navigation Technology 378
11.3 Conclusion .. 378

References .. 379
INS/CNS/GNSS Integrated Navigation Technology
Quan, W.; Li, J.; Gong, X.; Fang, J.
2015, XVI, 372 p. 152 illus., 30 illus. in color., Hardcover
ISBN: 978-3-662-45158-8