Contents

1 Mathematical Methods of Budget Modeling .. 1
 1.1 Budget as an Object of Modeling and Management 2
 1.1.1 Budget Structure and Contents ... 2
 1.1.2 Main Principles of Budget Formation 3
 1.2 Budget Models .. 6
 1.2.1 Models of Knowledge Representation and Budget Functioning 6
 1.2.2 Semantic Model of Budget Representation 10
 1.2.2.1 Object Domain Model .. 10
 1.2.2.2 A Budget Structure Graph .. 14
 1.2.2.3 A Graph Representing Budget Values 14
 1.2.2.4 An Example of the Semantic Model 17
 1.2.3 Frame-Based Model of Budget Knowledge Representation 18
 1.2.3.1 Budget Model ... 18
 1.2.3.2 Budget Item Model ... 20
 1.2.3.3 An Example of the Frame-Based Model 21
 1.3 Mathematical Budget Models .. 23
 1.3.1 Static Mathematical Budget Model .. 24
 1.3.2 Mathematical Model of Interaction of Income and Expenditure Items 28
 1.3.3 Model of Budget Sensitivity ... 32
 References .. 37

2 Methods and Mathematical Models of Budget Management 39
 2.1 Current Trends in Budgeting ... 39
 2.2 Current State of Budget Control Methods and Mathematical Models 41
 2.3 General Concept of the Programmable Method of Budget Mechanism Control 43
2.3.1 General Statement of the Problem of Budget Mechanism Control .. 43
2.3.2 Cybernetic Approach to the Description of Budget Mechanism .. 44
2.3.3 System Approach to the Mathematical Model of Budget Mechanism 47
2.4 Mathematical Models of Budget Expenditure ... 50
2.4.1 Construction of Program Movements for Budget Expenditure ... 50
2.4.2 A Model of Program Control of the Expenditure Budget Part 52
2.4.3 Model of Management Adjustment .. 57
2.4.4 Description of Algorithms of Basic Processes .. 59
2.5 Mathematical Models of Budget Revenue Part ... 61
2.5.1 Basic Provisions Describing Interactions of Budget Items ... 61
2.5.2 Learning Elements of Budget System ... 62
2.5.3 Model of Correction of Budget Revenue Forecast ... 65
2.6 Model of Information System for Program Budget Control .. 66

3 Energy-Entropic Methods in Assessment and Control of Economic Systems 73
3.1 Arguments in Favor of Application of the Thermodynamic Approach to Economic Systems 73
3.2 Energy-Entropy Model for Assessment of Economic System Management 80
3.3 Energy-Entropy Approach as the Basis of System Estimation of Production Management Quality ... 83
3.3.1 United Measuring System of Energy Resources ... 83
3.3.2 Methods Used to Estimate Power Consumption (Efficiency of Power Resources Usage) at the Enterprise Level ... 85
3.3.3 Entropic Evaluation of Production Efficiency .. 86
3.3.4 Usage of Energy-Saving Criterion to Assess Production Control Quality 92
3.3.4.1 A Thermodynamic Approach to Constructing Systems Controlling Production Processes ... 92
3.3.4.2 Comparison of Production Processes in Terms of Energy-Entropy 95

References ... 97

4 Currency Trading Methods and Mathematical Models .. 99
4.1 Currency Market Research and Management ... 99
4.2 Mathematical Models of Equilibrium Exchange Rates ... 102
4.2.1 Model Development and Analysis .. 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2</td>
<td>Equilibrium Exchange Rate: Statement of the Problem and Ways to Solve It</td>
<td>104</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Optimal Adjustment of Currency Exchange Rates</td>
<td>106</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Building a Balanced Directed Graph</td>
<td>108</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Equilibrium Exchange Rates: Problem-Solving Procedures</td>
<td>111</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Statement of the Assignment Problem</td>
<td>111</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Assignment Problem as a Linear Programming Problem</td>
<td>112</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Assignment Problem as a Transportation Problem</td>
<td>112</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Experimental Study of the Model of Equilibrium</td>
<td>115</td>
</tr>
<tr>
<td>4.3</td>
<td>Mathematical Projection Models for Currency Transactions</td>
<td>119</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Forecast Problem of Risk Minimization</td>
<td>119</td>
</tr>
<tr>
<td>4.3.2</td>
<td>A Collocation Model for Forecasting Operations on the Currency Market</td>
<td>121</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Background of the Collocation Model</td>
<td>121</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Development of Mathematical Model for Forecasting Exchange Rate</td>
<td>122</td>
</tr>
<tr>
<td>4.4</td>
<td>Information Decision Support Systems in Currency Operations</td>
<td>125</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Development of Information Model for Decision Support System in Currency Exchange Operations</td>
<td>125</td>
</tr>
<tr>
<td>4.4.2</td>
<td>IS Software</td>
<td>127</td>
</tr>
</tbody>
</table>

References | 129 |

5 Methods and Mathematical Models of Innovation Project

5.1 Current Status of Innovation Project Review and Appraisal | 131 |
5.1.1 Innovation Project as a Subject of Analysis and Appraisal | 131 |
5.1.2 Existing Methods and Tools of Evaluating Innovation Projects | 132 |

5.2 Development of Methods and Models for Assessing Innovativeness and Competitiveness of Innovative Projects | 138 |
5.2.1 The Essence of Innovation and Competitiveness | 138 |
5.2.2 Innovativeness Criteria for Innovative Projects | 139 |
5.2.3 Competitiveness Criteria for Innovative Projects | 140 |
5.2.4 Method and Graphic Model for Assessing Innovativeness and Competitiveness of Innovative Projects | 145 |

5.3 Development of Methods and Models for Assessing Feasibility and Cost-Effectiveness of Innovative Projects | 157 |
5.3.1 Basic Steps in Designing an Innovative Project | 157 |
5.3.2 Basic Life Cycles of Innovation Projects | 160 |
5.3.3 The Method and Graphic Model for Assessing Feasibility and Economic Effects of Innovation Projects | 166 |
5.3.4 Method and Graphic Model for Innovation Project Evaluation | 175 |
5.3.5 Research into the Methods and Models on Innovation Project Evaluation ... 176

5.4 Development of an Information System of Innovation Project
Examination .. 181
5.4.1 Decision Support Systems 181
5.4.2 DSS Functional Model Development 182
5.4.3 Development of Information Model of Innovation Project Evaluation ... 185

References .. 192

6 Mathematical Methods for Making Investment Decisions .. 195
6.1 Basic Concepts of the Risk Theory of an Investment Project .. 196
6.2 Investment Decisions: Project Choice and Risk Management .. 202
 6.2.1 Methods Supporting Decision-Making ... 202
 6.2.2 Methods Used to Assign the Utility Function Values ... 203
 6.2.3 Search for the Best Pareto Point ... 207
 6.2.4 Convolutions of Estimation Criteria ... 211
 6.2.5 Criteria Used to Choose Optimal Solution ... 213
 6.2.6 Choosing a Group Solution on the Basis of Multicriterion Estimation 214
6.3 Assessment of Investment Project in the Multicriterion Context ... 215
 6.3.1 The Hierarchy-Analysis Method as a Synthesis of Quantitatively Measurable Expert Information ... 215
 6.3.2 Assessment of Investment Project by Complex Criteria 219
6.4 Probabilistic Approach to Quantitative Risk Assessment .. 224
 6.4.1 Simulation Modeling of Investment Risks .. 226
6.5 Quantitative Risk Analysis Based on the Methods of Fuzzy Mathematics 228
6.6 Information Support for the Investment Project Analysis .. 240
 6.6.1 Filtration of Investment Projects ... 242
6.7 Examples of Investment Decision-Making ... 246
 6.7.1 Assessment of Investment Project Variants ... 246
 6.7.1.1 Problem formalization ... 247
 6.7.1.2 Creation of Information Database ... 250
 6.7.1.3 A Computer Experiment ... 252
 6.7.1.4 Quantitative Risk Assessment .. 256
 6.7.2 Comparative Assessment of Business Plans in Terms of Risk 258
References .. 262

7 Multi-Objective Stochastic Models for Making Decisions on Resource Allocation 265
7.1 Applicability of Multiple Criteria Optimization Methods .. 266
7.2 The Decision-Making Problem of Resource Allocation in Terms of Utility Theory 267
 7.2.1 Classical Principles of Choosing Alternative Solutions .. 267
7.2.2 Aggregation of Preferences in the Course of Decision-Making 268
7.2.3 Optimality of Making Decisions on Resource Allocation 270
7.2.4 Principles of Choosing Decisions on Resource Allocation Combining Classical Choice Principles 271
7.3 Formulation and Convolution of Criteria in Monocriterial Decision-Making Models ... 274
7.4 Single-Stage Stochastic Models for Limited Resource Allocation with Probabilistic Constraints 279
7.5 Multi-Stage Stochastic Models of Limited Resource Allocation with Probabilistic Constraints 282
7.6 Use of the Combined Policy Model for Making Decisions on Resource Allocation .. 285
7.6.1 Allocation of Maintenance Resources by Teplocentral Public Enterprise ... 285
7.6.2 Combination of Policies of Resource Allocation in the Investment Management ... 289
References ... 293

8 Mathematical Methods and Models for Monitoring of Government Programs .. 295
8.1 Government Program as a Targeted System with Program Management .. 296
8.1.1 Classification and Stages of Implementation of Government Programs ... 296
8.1.2 Aims and Tasks of Monitoring of Government Programs ... 297
8.2 Government Programs in Terms of Systems Theory and General Management Theory ... 299
8.3 Information and Model Representation of Government Programs and Methods of Monitoring Their Implementation 301
8.3.1 Formalization of Representation of the Government Program as a Hierarchical Tree ... 301
8.3.2 A Model Evaluating the State of the Top of the GP Tree ... 302
8.3.3 Task of Evaluation of Process Completion Time at the Top of the PHP Tree ... 304
8.3.4 A Production Model of Assessment of GP Status and Degree of Objective Achievement ... 305
8.3.5 The Task of Rapid Reallocation of Funds .. 309
8.3.6 The Task of Optimization of Network Management Model for Construction Works in Fuzzy Environment Based on the “Time-Cost” Criterion .. 311
8.4 Methods and Models for Evaluation of GP Implementation .. 314
8.4.1 Approaches to the Evaluation of Implementation of Government Programs .. 314
8.4.2 Fuzzy Cognitive Model of Risk Assessment of GP
Implementation ... 316
References ... 324

9 Methodology for Identification of Competitive Industrial Clusters 327
 9.1 Cluster Analysis of Kazakhstani Regions ... 328
 9.2 Methods of Identification of Competitive Industrial Clusters 338
References ... 348

Conclusion .. 351

About the Author .. 355