Contents

1 Introduction to Zirconacycle Chemistry .. 1
 1.1 N-Heterocyclic Compounds .. 1
 1.2 Zirconocene Chemistry ... 1
 1.3 Zirconocene-Mediated Cyclization Reactions and Application in the Synthesis of N-Heterocycles .. 2
 1.4 Zirconocene-Mediated Intramolecular Cyclization of Bis(Alkynyl)Silanes ... 9
 1.5 Reaction Chemistry of Zirconacyclobutene–Silacyclobutene Complexes ... 12
 1.5.1 Reaction of Zirconacyclobutene–Silacyclobutene Complexes with Alkynes (Class I) .. 13
 1.5.2 Reaction of Zirconacyclobutene–Silacyclobutene Complexes with C=X Bond (Class II) .. 16
 1.5.3 Reaction of Zirconacyclobutene–Silacyclobutene Complexes with Nitriles (Class III) .. 16
 References .. 17

2 Zirconocene-Mediated Cyclization of Bis(alkynyl)silanes and Nitriles: Synthesis of N-Heterocycles and Isolation, Characterization, and Synthetic Application of Zr/Si-Containing Reactive Intermediates .. 21
 2.1 Introduction .. 21
 2.2 Results and Discussion ... 22
 2.2.1 Formation of 5-Azaindoles from One Molecule of Bis(alkynyl)silane with Three Molecules of the Same Organonitrile .. 22
 2.2.2 Isolation and Characterization of Zr/Si-Containing Organometallic Reactive Intermediates .. 24
 2.2.3 Synthetic Application of Zr/Si-Containing Organometallic Reactive Intermediates .. 27
2.2.4 One-Pot Multi-component Coupling of Bis(alkynyl)silanes, Nitriles and Isocyanides and Synthesis of N-Containing Heterocycles via Intramolecular Cyclization of Iminoacyl–Zr Intermediates 29

2.2.5 One-Pot Synthesis of Pyrrolo[3,2-d]pyridazines and Pyrrole-2,3-Diones via Zirconocene-Mediated Four-Component Coupling of Bis(alkynyl)silane, Nitriles, and Azide 36

2.3 Summary ... 41

2.4 Experimental Section .. 42

References .. 58

3 Bulky Nitrile Coordination-Induced Skeleton Rearrangement of Zr-/Si-Containing Metallacycles and Selective Synthesis of 5-Azaindoles .. 63

3.1 Introduction .. 63

3.2 Results and Discussion .. 65

3.2.1 Bulky Nitriles Coordination-Induced Skeleton Rearrangement of Zirconacyclopentadiene–Azasilacyclopentadiene Complexes 65

3.2.2 Reaction and Synthetic Application of Zirconacyclopentadiene–Azasilacyclopentadiene Complexes: Reactions of the Zirconacyclopentadiene Moiety .. 67

3.2.3 Reaction and Synthetic Application of Zirconacyclopentadiene–Azasilacyclopentadiene Complexes: Reactions Involving Both the Zirconacycle and Silacycle Moiety .. 70

3.3 Summary ... 75

3.4 Experimental Section .. 76

References .. 89

4 Introduction to Semibullvalenes and Azasemibullvalenes 91

4.1 Homoaromaticity .. 91

4.2 Cope Rearrangement .. 93

4.3 Semibullvalene .. 94

4.3.1 Electronic Stabilization by Substituents (Dewar–Hoffmann SBV) .. 95

4.3.2 Destabilization of Localized Structure by Small Ring Annulation .. 100

4.3.3 Coordination with Metal Ion 101
4.3.4 Stabilization of Delocalized Structure by Solvation
4.3.5 Introduction of Heteroatom into Skeleton
4.3.6 Azasemibullvalene
References

5 2,6-Diazasemibullvalenes: Synthesis, Structural Characterization, and Theoretical Analysis
5.1 Introduction
5.2 Result and Discussion
5.2.1 2,6-Diazasemibullvalenes: Synthesis
5.2.2 2,6-Diazasemibullvalenes: Structural Characterization
5.2.3 2,6-Diazasemibullvalenes: Theoretical Analysis and Computational Results
5.3 Summary
5.4 Experimental Section
References

6 2,6-Diazasemibullvalenes: Reaction Chemistry and Synthetic Application
6.1 Introduction
6.2 Result and Discussion
6.2.1 Insertion Reaction of Unsaturated Compounds or Low-Valent Metals into the Weakened C–N Bonds of 2,6-Diazasemibullvalenes
6.2.2 Lewis Acid-Catalyzed Cycloadditions of 2,6-Diazasemibullvalenes with Isocyanides, Azides, and Diazocompounds: Novel Reaction Patterns Leading to N-Heterocyclic Cage-Shaped Compounds
6.2.3 Oxidation of 2,6-Diazasemibullvalenes by O2 or N-Oxides: Synthesis of Δ1-Bipyrrolinones and Pyrrolino[3,2-b]Pyrrolinones
6.2.4 Nucleophilic Ring-Opening Reactions of 2,6-Diazasemibullvalenes for the Synthesis of Diverse Functionalized Δ1-Bipyrroline Derivatives
6.3 Summary
6.4 Experimental Section
References
The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes
Synthesis, Structures, Reactions, and Applications in the Synthesis of Novel N-Heterocycles
Zhang, S.
2015, XI, 173 p. 131 illus., 5 illus. in color., Hardcover
ISBN: 978-3-662-45020-8