Contents

Part I Evolvable Hardware Practice
Martin A. Trefzer and Andy M. Tyrrell

1. **Evolution, Development and Evolvable Hardware**
 - Andy M. Tyrrell and Martin A. Trefzer
 - 1.1 Introduction .. 3
 - 1.2 Chromosomes and Genes .. 3
 - 1.3 Genotype and Phenotype .. 4
 - 1.4 Biological Living Organism Cells 4
 - 1.4.1 Stages of Development 6
 - 1.4.2 Characteristics of Biological Development 8
 - 1.5 Mathematical Abstractions of Development 9
 - 1.5.1 Gene Regulatory Network Abstractions 9
 - 1.5.2 L-Systems 10
 - 1.6 Developmental Systems in Artificial Systems 12
 - 1.7 Brief Introduction to Evolvable Hardware 14
 - 1.7.1 Extrinsic Evolvable Hardware 17
 - 1.7.2 Intrinsic Evolvable Hardware 19
 - 1.7.3 Models and Modelling 19
 - 1.8 Current Achievements and Challenges 23
 References ... 23

2. **Devices and Architectures for Evolutionary Hardware**
 - Martin A. Trefzer and Andy M. Tyrrell
 - 2.1 Introduction .. 27
 - 2.2 Definition of Terms .. 28
 - 2.2.1 Architecture, Interconnect and Fabric Structure 29
 - 2.2.2 Granularity .. 29
 - 2.2.3 Mapping Designs 31
 - 2.3 Digital Commercial Architectures 34
 - 2.3.1 Xilinx vs. Altera 34

xiii
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Lattice</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3</td>
<td>QuickLogic ArcticLink and PolarPro</td>
<td>38</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Microsemi (Actel)</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Elixent (Panasonic) D-Fabrix</td>
<td>40</td>
</tr>
<tr>
<td>2.3.6</td>
<td>PACT XPP-III</td>
<td>40</td>
</tr>
<tr>
<td>2.3.7</td>
<td>QuickSilver Adapt2400</td>
<td>41</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Coherent Logix HyperX</td>
<td>42</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Adapteva Parallella</td>
<td>42</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Discussion: Digital Commercial Architectures</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>Digital, Coarse-Grained Research & Development Architectures</td>
<td>44</td>
</tr>
<tr>
<td>2.4.1</td>
<td>KressArray</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2</td>
<td>RaPiD</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Colt</td>
<td>48</td>
</tr>
<tr>
<td>2.4.4</td>
<td>MATRIX</td>
<td>50</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Pleiades</td>
<td>50</td>
</tr>
<tr>
<td>2.4.6</td>
<td>REMARC</td>
<td>50</td>
</tr>
<tr>
<td>2.4.7</td>
<td>RAA, CHESS</td>
<td>51</td>
</tr>
<tr>
<td>2.4.8</td>
<td>MorphoSys</td>
<td>51</td>
</tr>
<tr>
<td>2.4.9</td>
<td>PipeRench</td>
<td>51</td>
</tr>
<tr>
<td>2.4.10</td>
<td>MONTIUM</td>
<td>52</td>
</tr>
<tr>
<td>2.4.11</td>
<td>DReAM</td>
<td>53</td>
</tr>
<tr>
<td>2.4.12</td>
<td>Discussion: Coarse-Grained Digital Architectures</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>Digital, Medium-Grained Research & Development Architectures</td>
<td>54</td>
</tr>
<tr>
<td>2.5.1</td>
<td>FIPSOC</td>
<td>54</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Sun FleetZERO (TTA)</td>
<td>54</td>
</tr>
<tr>
<td>2.5.3</td>
<td>H-Tree SW</td>
<td>55</td>
</tr>
<tr>
<td>2.5.4</td>
<td>RAW</td>
<td>56</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Discussion: Medium-Grained Digital Architectures</td>
<td>56</td>
</tr>
<tr>
<td>2.6</td>
<td>Digital, Fine-Grained Research & Development Architectures</td>
<td>57</td>
</tr>
<tr>
<td>2.6.1</td>
<td>PADDI, PADDI-2</td>
<td>57</td>
</tr>
<tr>
<td>2.6.2</td>
<td>MOVE32INT (TTA)</td>
<td>58</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Garp</td>
<td>58</td>
</tr>
<tr>
<td>2.6.4</td>
<td>CellMatrix (PIG)</td>
<td>58</td>
</tr>
<tr>
<td>2.6.5</td>
<td>POEtic</td>
<td>59</td>
</tr>
<tr>
<td>2.6.6</td>
<td>RISA</td>
<td>59</td>
</tr>
<tr>
<td>2.6.7</td>
<td>UbiChip (PERPLEXUS)</td>
<td>60</td>
</tr>
<tr>
<td>2.6.8</td>
<td>SABRE (Unitronics)</td>
<td>61</td>
</tr>
<tr>
<td>2.6.9</td>
<td>PanDA</td>
<td>62</td>
</tr>
<tr>
<td>2.6.10</td>
<td>Discussion: Fine-Grained Digital Architectures</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>Discussion: Digital Commercial vs. Digital Research</td>
<td>63</td>
</tr>
<tr>
<td>2.8</td>
<td>Analogue Commercial Architectures</td>
<td>66</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Zetex TRAC 020LH</td>
<td>68</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Lattice ispPAC-10, ispPAC-20, ispPAC-30 and ispPAC-80/81</td>
<td>69</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Anadigm AN221E04</td>
<td>69</td>
</tr>
</tbody>
</table>
Contents

2.8.4 Programmable Delay Lines .. 72
2.8.5 Discussion: Analogue Commercial 72

2.9 Analogue Research & Development Architectures 73
2.9.1 FPAA (Lee) ... 73
2.9.2 FIPSOC ... 74
2.9.3 Intermediate Frequency Filter 74
2.9.4 Anti-fuse FPAA .. 75
2.9.5 FPTA, FPTA-2 (HD) 75
2.9.6 FP0, FP0-1 and FP0-2 (JPL) 75
2.9.7 HAGEN .. 77
2.9.8 Hex-FPAA ... 77
2.9.9 HICANN .. 78
2.9.10 Discussion: Analogue Research & Development 78

2.10 Analogue Research vs. Analogue Commercial 79

2.11 Final Thoughts on Future Platforms 80

References .. 82

3 Representations and Algorithms 89
Andy M. Tyrrell and Martin A. Trefzer

3.1 Introduction .. 89

3.2 Basic Requirements ... 90
3.2.1 Netlists ... 91
3.2.2 Bitstreams .. 94

3.3 Evolutionary Algorithms 94
3.3.1 Genetic Algorithms (GAs) 98
3.3.2 Artificial Genotypes 98

3.4 Selection Schemes ... 100
3.4.1 Simple Roulette Wheel Selection 100
3.4.2 Tournament Selection 101
3.4.3 Elitism .. 101

3.5 Reproduction .. 102
3.5.1 Crossover ... 102
3.5.2 Single-Point and N-Point Crossover 102
3.5.3 Uniform Crossover 103
3.5.4 Mutation ... 104

3.6 Schema Theory .. 105

3.7 Evolutionary Strategies (ES) 106

3.8 Genetic Programming (GP) 107

3.9 Cartesian Genetic Programming (CGP) 111

3.10 Development ... 112
3.10.1 Benefits of Multicellular Development 113

3.11 Summary .. 115

References .. 116
Measurement and Fitness Function

Martin A. Trefzer and Andy M. Tyrrell

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>4.2</td>
<td>Hardware Measurement</td>
<td>121</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Analogue and Digital Signals</td>
<td>121</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Mismatch and Noise</td>
<td>122</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Parasitic Effects</td>
<td>124</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Configuration Circuitry</td>
<td>124</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Bandwidth, Distortion and Accuracy</td>
<td>126</td>
</tr>
<tr>
<td>4.3</td>
<td>Test and Verification</td>
<td>128</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Input Pattern Order Problem (IPOP)</td>
<td>128</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Implications of Transient Effects</td>
<td>129</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Effect of Physical Input Location</td>
<td>130</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Influence of the Fitness-Measuring Method</td>
<td>130</td>
</tr>
<tr>
<td>4.4</td>
<td>Validation of Evolved Circuits</td>
<td>131</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Random Input Test Patterns</td>
<td>131</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Measuring at Different Hardware Locations</td>
<td>132</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Testing at Different Frequencies and Supply Voltages</td>
<td>133</td>
</tr>
<tr>
<td>4.5</td>
<td>Fitness Functions for Analogue Hardware</td>
<td>133</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Random Input Pattern Order</td>
<td>134</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Fitness Functions with Physical Meaning</td>
<td>134</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Absolute vs. Relative Error</td>
<td>135</td>
</tr>
<tr>
<td>4.6</td>
<td>Hierarchical Fitness Functions for Digital Hardware</td>
<td>135</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Bitwise Fitness Calculation</td>
<td>137</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Bitwise Fitness Modified for Hardware (BMH)</td>
<td>137</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Hierarchical If-And-Only-If (HIFF)</td>
<td>139</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Hierarchical Bit-String Sampling (HBS)</td>
<td>140</td>
</tr>
<tr>
<td>4.7</td>
<td>Multi-objective Optimisation for Real-World Applications</td>
<td>140</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Non-dominated Sorting</td>
<td>141</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Crowding Distance</td>
<td>142</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Multi-objective Evolutionary Loop</td>
<td>143</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Selection Schemes</td>
<td>143</td>
</tr>
<tr>
<td>4.8</td>
<td>Successes of Evolutionary Computation When Fighting Noise and Mismatch</td>
<td>144</td>
</tr>
<tr>
<td>4.9</td>
<td>Final Thoughts on Measurement and Fitness</td>
<td>145</td>
</tr>
</tbody>
</table>

References

4. Measurement and Fitness Function

1. Testing and Verification
2. Validation of Evolved Circuits
3. Fitness Functions for Analogue Hardware
4. Hierarchical Fitness Functions for Digital Hardware
5. Multi-objective Optimisation for Real-World Applications
6. Successes of Evolutionary Computation When Fighting Noise and Mismatch
7. Final Thoughts on Measurement and Fitness

Part II Evolvable Hardware Applications

5. Overcoming Variability Through Transistor Reconfiguration: Evolvable Hardware on the PAnDA Architecture

James A. Walker

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>5.2</td>
<td>Limitations of Current Field-Programmable Gate Array (FPGA) Architectures</td>
<td>156</td>
</tr>
</tbody>
</table>
5.3 Current Field-Programmable Transistor Array (FPTA) Architectures ... 157
5.4 Combining Inspiration from Field-Programmable Transistor Arrays (FPTAs) and Variation-Aware Design 158
5.5 PAnDA Architecture 159
5.5.1 Configurable Transistor 160
5.5.2 Combinational Configurable Analogue Block (CCAB) . 164
5.6 Case Study: ISCAS C17 Benchmark 167
5.7 Final Thoughts .. 171
References ... 171

6 Functional Equivalence Checking for Evolution of Complex Digital Circuits .. 175
Lukáš Sekanina and Zdeněk Vašíček
6.1 Introduction ... 175
6.2 Functional Equivalence Checking 177
6.2.1 SAT Problem ... 177
6.2.2 SAT-Based Functional Equivalence Checking 178
6.2.3 Creating a Circuit to Be Verified from the Parent and Offspring .. 178
6.2.4 Converting the Circuit to a Logic Formula in CNF 179
6.2.5 Solving the Logic Formula Using a SAT Solver 181
6.2.6 Further Optimisations of Functional Equivalence Checking .. 181
6.3 Embedding Functional Equivalence Checking into CGP 182
6.3.1 Cartesian Genetic Programming 183
6.3.2 SAT Solver in the Fitness Function 184
6.4 Experimental Results 184
6.4.1 Speedup Against Standard CGP 185
6.4.2 Benchmark Circuits 186
6.5 Final Thoughts .. 187
References ... 188

7 Fault Tolerant Applications 191
Andy M. Tyrrell
7.1 Brief Introduction to Fault Tolerance 191
7.2 Bio-inspired Fault Tolerance 195
7.3 A Place for Evolved Fault Tolerance? 196
7.3.1 Method 1: Evolving Fault Tolerance 196
7.3.2 Method 2: Fault Tolerance Using Natural Redundancy . 196
7.3.3 Method 3: Fault Evolution 197
7.4 Explicit Fault Tolerance Using Evolvable Hardware 197
7.5 Evolved Fault Tolerance 198
7.6 Results and Discussion 198
7.7 Implicit Fault Tolerance Using Evolvable Hardware 201
7.8 Final Thoughts .. 206
8 Principles and Applications of Polymorphic Circuits .. 209
Lukaš Sekanina
8.1 Introduction .. 209
8.2 Polymorphic Components 210
 8.2.1 Polymorphic Gates and Their Properties 210
 8.2.2 Reconfigurable Polymorphic Chip 212
8.3 Synthesis and Optimisation of Polymorphic Circuits 213
 8.3.1 Polymorphic Multiplexing 214
 8.3.2 Evolution of Polymorphic Circuits 216
8.4 Applications of Polymorphic Electronics 216
 8.4.1 Signal-Processing Circuits 217
 8.4.2 Dependability and Testing 218
 8.4.3 Other Applications 221
8.5 Final Thoughts .. 221
References ... 223

9 A Developmental Image Compression Technique Using Gene Regulatory Networks .. 225
Martin A. Trefzer
9.1 Introduction .. 225
9.2 Standard Image Compression Techniques 227
 9.2.1 JPEG and JPEG 2000 Image Compression Standards ... 227
 9.2.2 Vector Quantisation (VQ) 228
9.3 Non-standard Image Compression Techniques 228
 9.3.1 Fractal Image Compression 229
 9.3.2 Evolutionary Computation for Image Compression 229
9.4 Artificial Developmental System 230
 9.4.1 Representation and Gene Regulation 231
 9.4.2 Cell Signalling and Growth 233
 9.4.3 Cell Specialisation and Structuring 237
9.5 Image Compression Using GRN 237
9.6 Evolutionary Optimisation of the Model 240
9.7 Multi-pass Encoding 241
9.8 Comparison of GCI with JPEG Using the Lena Image 242
9.9 Dynamics of the GRN 245
9.10 Testing GCI on Different Images 246
9.11 Final Thoughts .. 248
References ... 251

10 Medical Applications of Evolvable Hardware 253
Michael A. Lones and Stephen L. Smith
10.1 Introduction .. 253
 10.1.1 Processing Signals from Medical Devices 254
 10.1.2 Hardware-Assisted Evolution 254
Contents

10.1.3 Evolving Medical Devices ... 256
10.1.4 Embedded Evolutionary Algorithms 256

10.2 Neurodegenerative Disease Diagnosis and Monitoring 256
10.2.1 Classifying Assessment Data 258
10.2.2 Classification in Hardware 261
10.2.3 Long-Term Monitoring 263

10.3 Final Thoughts .. 267

References .. 269

11 Metamorphic Systems: A Schema for Adaptive Autonomous
Systems ... 273
Garrison W. Greenwood and Andy M. Tyrrell

11.1 Introduction ... 273
11.2 Metamorphic Systems ... 274
11.3 Event-Driven Architecture ... 276
11.3.1 The Concept of an Event 276
11.3.2 Time-Driven Versus Event-Driven Systems 277
11.3.3 Event Processing .. 278

11.4 Example Problem .. 279
11.4.1 DC Motor Dynamics ... 279
11.4.2 Motor Control ... 280

11.5 A Metamorphic System Approach 286
11.5.1 Achieving Autonomous Behaviour Adaption 286
11.5.2 Assessment Module ... 288
11.5.3 Detection Mechanism ... 291
11.5.4 Implementation Ideas ... 292

11.6 Final Thoughts ... 294

References .. 295

12 Hierarchical Networks-on-Chip Architecture for Neuromorphic
Hardware ... 297
Snaider Carrillo, Jim Harkin and Liam McDaid

12.1 Introduction ... 297
12.1.1 Spiking Neural Networks 298
12.1.2 Networks-on-Chip .. 298
12.1.3 Chapter Outline .. 300

12.2 Related Work ... 300
12.3 Overview of the H-NoC Architecture 302
12.3.1 Neuron Facility: Bottom Level of H-NoC 304
12.3.2 Configuration Bank Registers 306
12.3.3 Spike Compression Technique 309
12.3.4 Tile Facility: Intermediate Level of H-NoC 311
12.3.5 Cluster Facility: Top Level of H-NoC 312
12.3.6 Adaptive-Routing Scheme 315

12.4 Example Scenarios and Analysis 317
12.4.1 Feed-Forward Network .. 317
12.4.2 Recurrent Network ... 321
12.4.3 Experimental Results and Large-Scale Analysis 325
12.5 Final Thoughts ... 326
References ... 328

13 Evolvable Robot Hardware ... 331
Alan F. T. Winfield and Jon Timmis
13.1 Introduction ... 331
13.2 A Brief Introduction to Evolutionary Robotics 332
13.2.1 The Evolutionary Robotics Process 332
13.2.2 Evolution of Robot Bodies 334
13.2.3 Evolution of Robot Controllers 336
13.3 Evolvable Robot Hardware, Challenges and Directions 337
13.3.1 An Engineering Approach 338
13.3.2 A Bio-inspired (Modular or Multicellular) Approach 341
13.3.3 Self-healing ... 343
13.3.4 Integrating the Evolutionary Processes 344
13.3.5 Final Thoughts ... 346
References ... 347

14 Developmental Evolvable Hardware 349
Pauline C. Haddow
14.1 Introduction ... 349
14.2 Brief Survey of Developmental Evolvable Hardware 351
14.3 On-chip Rule-Based Development for Digital Design 352
14.3.1 Cellular Model .. 353
14.3.2 Virtual sBlock Architecture 356
14.3.3 Implementation of the sBlock Architecture 357
14.3.4 On-chip Development Architecture 358
14.3.5 Counting Example ... 360
14.4 Gene Switching for Adaptive Intrinsic Analogue Evolvable
Hardware ... 362
14.4.1 Gene-Switching Model ... 362
14.4.2 Hardware System ... 367
14.4.3 Adaptive Example .. 369
14.5 Final Thoughts ... 370
References ... 371

A Evolvable Hardware Practice ... 373
A.1 Lab 1: Evolvable Logic on FPGAs 373
A.1.1 Prerequisites for Lab 1 ... 374
A.1.2 Program and Run a Test Bit File (Atlys_Test.bit) 374
A.1.3 The Evolvable Hardware Architecture 378
A.1.4 Evolution of Full Adders ... 381
A.1.5 Opening EDK and the Evolution System 383
A.1.6 Start Evolving Full Adders 385
A.1.7 Finding Solutions ... 386
A.1.8 Evolution of a 2-bit Adder 387
A.1.9 Things to Try And Investigate 388
A.1.10 Function Reference 389
A.1.11 Bit Manipulation in C 392
A.2 Lab 1: Evolvable Logic on FPGAs — Solutions 392
 A.2.1 2-bit Adder Output Calculation 392
 A.2.2 Elitism ... 394
 A.2.3 Crossover .. 394
 A.2.4 Solution Source File 396
 A.2.5 Example Solution ... 396
A.3 Lab 2: Fault Tolerance Through Evolvable Logic on FPGAs 398
 A.3.1 Prerequisites for Lab 2 398
 A.3.2 Parity Generator Specification 398
 A.3.3 Fault Tolerance Evolvable Hardware System 399
 A.3.4 Creating the Fault Tolerant System on FPGAs 404
 A.3.5 Fault Injection ... 406
 A.3.6 Things to Try ... 407
 A.3.7 Function Reference .. 407
Evolvable Hardware
From Practice to Application
Trefzer, M.A.; Tyrrell, A.M.
2015, XXVII, 411 p. 187 illus., 78 illus. in color., Hardcover
ISBN: 978-3-662-44615-7