Contents

1 Introduction 1
 References ... 2

2 Graphene—Two-Dimensional Crystal 3
 2.1 Introduction to Graphene 3
 2.2 Fabrication of Graphene 11
 2.2.1 Mechanical Exfoliation 11
 2.2.2 Chemical Vapor Decomposition 12
 2.2.3 Thermal Decomposition of SiC 12
 2.2.4 Reduction of Graphite Oxide (GO) 13
 2.3 Mechanical Properties 13
 2.4 Electronic Band Structure of Graphene 14
 2.4.1 Tight-Binding Model 14
 2.4.2 Effective Mass Approximation, Dirac Fermions and Berry’s Phase 18
 2.4.3 Chirality and Absence of Backscattering 21
 2.4.4 Bilayer Graphene 22
 References ... 24

3 Graphene Nanostructures and Quantum Dots 29
 3.1 Fabrication Methods 29
 3.2 The Role of Edges 32
 3.3 Size Quantization Effects 35
 References ... 36

4 Single-Particle Properties of Graphene Quantum Dots 39
 4.1 Size, Shape and Edge Dependence of Single Particle Spectrum 39
 4.1.1 One-Band Empirical Tight-Binding Model 39
 4.1.2 Effective Mass Model of Graphene Quantum Dots 46
4.1.3 Graphene Quantum Dots in a Magnetic Field in the Effective Mass Approximation 49
4.2 Spin-Orbit Coupling in Graphene Quantum Dots 53
 4.2.1 Four-Band Tight-Binding Model 55
 4.2.2 Inclusion of Spin-Orbit Coupling into Four-Band Tight-Binding Model 56
 4.2.3 Kane-Mele Hamiltonian and Quantum Spin Hall Effect in Nanoribbons 58
4.3 Triangular Graphene Quantum Dots with Zigzag Edges 62
 4.3.1 Energy Spectrum 62
 4.3.2 Analytical Solution for Zero-Energy States 63
 4.3.3 Zero-Energy States in a Magnetic Field 68
 4.3.4 Classification of States with Respect to Irreducible Representations of C_{3v} Symmetry Group 68
 4.3.5 The Effect of Spin-Orbit Coupling 76
4.4 Bilayer Triangular Graphene Quantum Dots with Zigzag Edges 77
4.5 Triangular Mesoscopic Quantum Rings with Zigzag Edges 79
 4.5.1 Energy Spectrum 80
4.6 Hexagonal Mesoscopic Quantum Rings 81
 4.6.1 Energy Spectrum 82
4.7 Nanoribbon Rings 86
 4.7.1 Möbius and Cyclic Nanoribbon Rings 87
References 89

5 Electron–Electron Interactions in Graphene Quantum Dots 91
 5.1 Introduction 91
 5.2 Many-Body Hamiltonian 93
 5.3 Two Body Scattering—Coulomb Matrix Elements 94
 5.4 Mean-Field Hartree-Fock Approximation 95
 5.4.1 Hartree-Fock State in Graphene Quantum Dots 96
 5.4.2 Semimetal-Mott Insulator Transition in Graphene Quantum Dots 99
 5.4.3 Hubbard Model—Mean-Field Approximation 100
 5.5 Ab Initio Density Functional Approach 101
 5.6 Configuration Interaction Method 103
 5.6.1 Many-Body Configurations 103
 5.6.2 Diagonalization Methods for Large Matrices 106
 5.7 TB+HF+CI Method 107
References 108
6 Magnetic Properties of Gated Graphene Nanostructures 111
 6.1 Triangular Graphene Quantum Dots with Zigzag Edges 111
 6.1.1 Filling Factor Dependence of the Total Spin of TGQD 111
 6.1.2 Size Dependence of Magnetic Properties of TGQD: Excitons, Trions and Lieb’s Theorem 114
 6.1.3 Pair-Correlation Function of Spin Depolarized States 119
 6.1.4 Coulomb and Spin Blockades in TGQD 120
 6.1.5 Comparison of Hubbard, Extended Hubbard and Full CI Results 122
 6.1.6 Edge Stability from Ab Initio Methods 125
 6.2 Bilayer Triangular Graphene Quantum Dots with Zigzag Edges 130
 6.3 Triangular Mesoscopic Quantum Rings with Zigzag Edges 132
 6.3.1 Properties of the Charge-Neutral TGQR 133
 6.3.2 Filling Factor Dependence of Mesoscopic TGQRs 136
 6.4 Hexagonal Mesoscopic Quantum Rings 138
 6.4.1 Dependence of Magnetic Moment in Hexagonal GQRs on Size 138
 6.4.2 Analysis as a Function of Filling Factor 140
 6.5 Nanoribbon Rings 140
 References 143

7 Optical Properties of Graphene Nanostructures 145
 7.1 Size, Shape and Type of Edge Dependence of the Energy Gap 145
 7.2 Optical Joint Density of States 147
 7.3 Triangular Graphene Quantum Dots With Zigzag Edges 149
 7.3.1 Excitons in Graphene Quantum Dots 149
 7.3.2 Charged Excitons in Interacting Charged Quantum Dots 152
 7.3.3 Terahertz Spectroscopy of Degenerate Shell 152
 7.4 Optical Spin Blockade and Optical Control of Magnetic Moment in Graphene Quantum Dots 154
 7.5 Optical Properties of Colloidal Graphene Quantum Dots 159
 7.5.1 Optical Selection Rules for Triangular Graphene Quantum Dots 159
 7.5.2 Band-edge Exciton 162
 7.5.3 Low-Energy Absorption Spectrum 164
 7.5.4 Effects of Screening κ and Tunneling t 164
 7.5.5 Comparison With Experiment 167
 References 168

Index 169
Graphene Quantum Dots
Güçlü, A.D.; Potasz, P.; Korkusinski, M.; Hawrylak, P.
2014, IX, 172 p. 104 illus., 37 illus. in color., Hardcover