Platinum group elements (PGE) are six rare metals, platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru), and osmium (Os), with excellent catalytic properties. Most notably, Pt, Pd, and Rh have been increasingly used in a number of applications over the last three decades. They are employed as catalysts in various chemical processes such as in hydrating and dehydrating reactions in the pharmaceutical industry and in the production of synthetic polymers, pesticides, and dyes. Following the initial introduction of automotive catalytic converters in North America in the 1970s, Pt, Pd, and Rh have been widely used as the catalysts of choice to reduce nitrous oxide, carbon monoxide, and hydrocarbon emissions in fuel exhaust. In fact, the largest application of PGE is the catalytic converter industry, which used 45, 78, and 80 % of the global production (supply + recycling) of Pt, Pd, and Rh in 2013, respectively (Johnson Matthey Platinum 2013, Interim Review).

While the use of automotive catalytic converters have greatly contributed to the improvement of air quality, it has also led to an accumulation of PGE in the environment, as these catalysts are emitted in small amounts due to mechanical, thermal, and chemical stressors. The potential environmental and human health effects of PGE emissions in automotive exhaust have been controversial, and the focus of much debate. In addition to automotive exhaust emissions, chemical facilities and the mining industry are primary emitters of PGE. Despite the solid body of research over the years, which has provided strong evidence regarding the increased presence of PGE in the atmosphere, large gaps in our knowledge regarding the possible environmental health implications of emissions still remain.

While original research on PGE emissions in the environment stems from the 1980s, considerable advancements have been made on this topic in the last 10 years, especially in terms of the development of analytical methodologies. Along with this, has been a rash and welcome increase in the number of studies examining various aspects of PGE emissions to the environment. New data has been generated regarding the chemical behavior of PGE, including their environmental mobility, solubility, bioaccessibility, and toxic potential. This edited volume, “Platinum Metals in the Environment”, builds upon three previously edited books by Zereini

The book is grouped into five main parts, each consisting of contributions addressing similar aspects of each of the main topical areas: (1) Sources of PGE Emissions, (2) Analytical Methods for the Determination of PGE in Biological and Environmental Matrices, (3) Occurrence, Chemical Behavior, and Fate of PGE in the Environment, (4) Environmental Bioavailability and Biomonitoring of PGE, and (5) Human Health Exposures to PGE and Possible Risks.

A total of 61 scientists from 14 different countries contributed to this highly interdisciplinary volume, addressing topics covering the fields of chemistry, biology, geochemistry, and medicine. The range of topics covered and the research results presented and discussed will make this book of interest to experts both inside and outside of academia, as well as to post-secondary undergraduate and graduate students.

The editors would like to thank the authors and the reviewers for their timely efforts and valuable contributions to this highly successful, cooperative endeavor. Many thanks go to our colleagues of the Noble Metal Forum in Germany for their support: Prof. Dr. Kerstin Leopold (Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Germany), Prof. Dr. Michael Schuster (Analytical Chemistry, Technische Universität München, Germany), Dr. Rudolf Schierl (Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital of Munich, Germany), Prof. Dr. Stephan Hann (Department of Chemistry, University of Natural Resources and Life Sciences—BOKU Vienna, Austria) and Prof. Dr. Bernd Sures, Dr. Sonja Zimmermann und Dr. Nadine Ruchter (Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Germany).

In addition, special thanks go to Prof. Dr. Sebastien Rauch (Department of Civil and Environmental Engineering, Chalmers University of Technology, Sweden), Prof. Dr. Rumyana Djingova (Faculty of Chemistry and Pharmcy University of Sofia, Bulgaria), Prof Dr. Vojtech Adam (Department of Chemistry and Biochemistry Faculty of Agronomy, Mendel University in Brno, Czech Republic), Prof. Dr. Ana Maria G. Figueiredo (Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil), Prof. Dr. Ivo Iavicoli (Institute of Public Health—Section of Occupational Medicine Università Cattolica del Sacro Cuore, Italy), Prof. Dr. Beata Godlew ska-Żykiewicz (University of Białystok, Institute of Chemistry, Poland), Prof. Dr. Krystyna Pyrzynska (Warsaw University, Chemistry Dept. Laboratory of Flow Analysis and Chromatography, Warsaw, Poland), Prof. Dr. Shankararaman Chellam (Department of Civil and Environmental Engineering, University of
Houston, USA) and Prof. Dr. Ross A. Sutherland (University of Hawaii, Geomorphology Laboratory, Department of Geography, USA).

We would like to express our gratitude to Springer-Verlag for making this book publication possible. In particular, we are grateful to Agata Oelschläger for her editorial expertise and assistance. Finally, we would like to extend our thanks to our families for their patience, understanding, and support.

Frankfurt am Main, Germany, June 2014

Fathi Zereini

Toronto, Canada

Clare L.S. Wiseman
Contents

Part I Sources of PGE Emissions

Sources of Platinum Group Elements in the Environment 3
Sebastien Rauch and Bernhard Peucker-Ehrenbrink

Impact of Platinum Group Element Emissions from Mining
and Production Activities 19
Sebastien Rauch and Olalekan S. Fatoki

Part II Analytical Methods for the Determination of PGE
in Biological and Environmental Matrices

Appraisal of Biosorption for Recovery, Separation
and Determination of Platinum, Palladium
and Rhodium in Environmental Samples 33
Beata Godlewska-Żykiewicz and Julita Malejko

On the Underestimated Factors Influencing the Accuracy
of Determination of Pt and Pd by Electrothermal
Atomic Absorption Spectrometry in Road Dust Samples 53
Barbara Leśniewska, Sylwia Sawicka and Beata Godlewska-Żykiewicz

Application of Solid Sorbents for Enrichment and Separation
of Platinum Metal Ions .. 67
Krystyna Pyrzynska

Voltammetric Analysis of Platinum in Environmental Matrices 79
Santino Orecchio and Diana Amorello
Platinum Metals in the Environment
Zereini, F.; Wiseman, C.L.S. (Eds.)
2015, XXII, 492 p. 94 illus., 33 illus. in color., Hardcover
ISBN: 978-3-662-44558-7