1 General Methods for Obtaining Nanoscale Light Spot 1
 1.1 Introduction ... 1
 1.2 Near-Field Scanning Probe Method .. 2
 1.2.1 Aperture-Type Probe ... 3
 1.2.2 Apertureless-Type Metal Probe 4
 1.2.3 Tip-on-Aperture-Type Probe 4
 1.2.4 C-Aperture Encircled by Surface Corrugations on a Metal Film 5
 1.2.5 Nonlinear Self-focusing Probe 7
 1.3 Solid Immersion Lens Method ... 7
 1.4 Surface Plasmonic Lens .. 9
 1.5 Stimulated Emission Depletion Fluorescence Microscope Methods 10
References .. 12

2 Third-Order Nonlinear Effects .. 13
 2.1 Introduction ... 13
 2.2 Nonlinear Refraction ... 14
 2.3 Nonlinear Absorption ... 16
References .. 18

3 Characterization Methods for Nonlinear Absorption and Refraction Coefficients 19
 3.1 Introduction ... 19
 3.2 Theory and Setup of Basic z-scan Method 19
 3.2.1 Description of Basic Principle 19
 3.2.2 Data Analysis for z-scan Curves 21
 3.3 Generation and Elimination of Pseudo-nonlinearity in z-scan Measurement 27
 3.3.1 Incident Angle as a Function of z-scan Position 27

References .. 27
3.3.2 Dependence of Transmittance on Incident and Polarization Azimuth Angles ... 29
3.3.3 Incident Angle Change-Induced Pseudo-nonlinear Absorption ... 31
3.3.4 Calculated Pseudo-nonlinear Absorption Curves 32
3.3.5 Reduction or Elimination of Pseudo-nonlinear Absorption ... 35
3.4 Eliminating the Influence from Reflection Loss on z-scan Measurement ... 36
3.4.1 Fresnel Reflection Loss in the z-scan Measurement 36
3.4.2 The Case of Thin Samples ... 37
3.4.3 The Case of Nanofilm Samples ... 41
3.5 Influence of Feedback Light on z-scan Measurement 46
3.5.1 Influence of Feedback Light on Semiconductor Laser Devices ... 47
3.5.2 Elimination of Feedback Light Influence on z-scan Measurement ... 54

References .. 59

4 Optical Nonlinear Absorption and Refraction of Semiconductor Thin Films ... 61
4.1 Introduction ... 61
4.2 Theoretical Basis ... 61
4.2.1 Two-Band Model for Free-Carriers-Induced Nonlinear Effects ... 61
4.2.2 Three-Band Model for Nonlinear Absorption and Refraction ... 71
4.2.3 Thermally Induced Nonlinear Absorption and Refraction ... 75
4.3 Nonlinear Absorption and Refraction of Semiconductor Thin Films ... 80
4.3.1 Nonlinear Saturation Absorption of c-Sb-Based Phase-Change Thin Films ... 80
4.3.2 Nonlinear Reverse Saturation Absorption and Refraction of c-InSb Thin Films ... 85
4.3.3 Nonlinear Reverse Saturation Absorption of AgInSbTe Thin Films ... 90
4.3.4 Nonlinear Absorption Reversal of c-Ge2Sb2Te5 Thin Films ... 93
4.3.5 Nonlinear Saturation Absorption and Refraction of Ag-doped Si Thin Films ... 99
4.4 Summary ... 103
References .. 104

5 Nanoscale Spot Formation Through Nonlinear Refraction Effect ... 107
5.1 Introduction ... 107
5.2 Interference Manipulation-Induced Nanoscale Spot ... 108
5.2.1 Nonlinear Fabry–Perot Cavity Structure Model. 108

5.3 Self-focusing Effect-Induced Nanoscale Spot Through "Thick" Samples. 121

5.3.1 Multilayer Thin Lens Self-focusing Model. 123

5.3.2 Light Traveling Inside Positive Nonlinear Refraction Samples. 126

5.3.3 Comparison with Equivalent Converging Lens Model. 131

5.3.4 Application Schematic Design. 132

5.4 Summary. 133

References. 133

6 Optical Super-Resolution Effect Through Nonlinear Saturation Absorption. 135

6.1 Basic Description of Nonlinear Saturation Absorption-Induced Super-Resolution Effect. 135

6.2 Beer–Lambert Model for Thin (or Weak) Nonlinear Saturation Absorption Sample. 136

6.2.1 Beer–Lambert Analytical Model. 136

6.2.2 Experimental Observation of Super-Resolution Spot. 137

6.3 Multi-layer Model for Thick (or Strong) Nonlinear Saturation Absorption Samples. 143

6.3.1 Multi-layer Analytical Model for Formation of Pinhole Channel. 143

6.3.2 Super-Resolution Effect Analysis Using Multi-layer Model. 144

6.4 Summary. 150

References. 151

7 Resolving Improvement by Combination of Pupil Filters and Nonlinear Thin Films. 153

7.1 Introduction. 153

7.2 Super-Resolution with Pupil Filters. 153

7.2.1 Binary Optical Elements as Pupil Filters: Linearly Polarized Light Illumination. 153

7.2.2 Ternary Optical Elements as Pupil Filters: Radially or Circularly Polarized Light Illumination. 158

7.3 Combination of Pupil Filters with Nonlinear Absorption Thin Films. 165

7.3.1 Combination of Nonlinear Saturation Absorption Thin Films with Three-Zone Annular Binary Phase Filters: Linearly Polarized Light Illumination. 166

7.3.2 Combination of Nonlinear Reverse Saturation Absorption Thin Films with Five-Zone Binary Pupil Filter: Circularly Polarized Light Illumination. 171

7.4 Nonlinear Thin Films as Pupil Filters. 177

7.4.1 Scalar Theoretical Basis. 177
8 Applications of Nonlinear Super-Resolution Thin Films in Nano-optical Data Storage .. 195
 8.1 Development Trend for Optical Information Storage 195
 8.2 Saturation Absorption-Induced High-Density Optical Data Storage ... 196
 8.2.1 Read-Only Super-Resolution Optical Disk Storage 196
 8.2.2 Recordable Super-Resolution Nano-optical Storage 202
 8.3 Reverse-Saturation Absorption-Induced Super-Resolution Optical Storage ... 215
 8.3.1 Recordable Super-Resolution Optical Disks with Nonlinear Reverse-Saturation Absorption 215
 8.3.2 Read-Only Optical Disk with Reverse-Saturation Absorption Effect .. 216
 8.4 Read-Only Super-Resolution Optical Disks with Thermally Induced Reflectance Change Effect 219
References ... 222

9 Applications of Nonlinear Super-Resolution Effects in Nanolithography and High-Resolution Light Imaging 225
 9.1 Introduction ... 225
 9.2 Thermal Threshold Lithography 225
 9.2.1 Crystallization Threshold Lithography 226
 9.2.2 Thermal Decomposition Threshold Lithography 228
 9.2.3 Molten Ablation Threshold Lithography 230
 9.2.4 Pattern Application: Grayscale Lithography 231
 9.3 Nanolithography by Combination of Saturation Absorption and Thermal Threshold Effects 232
 9.3.1 Basic Principle .. 232
 9.3.2 Nanoscale Lithography Induced by Si Thin Film with 405-nm Laser Wavelength 233
 9.4 Nanolithography by Combination of Reverse Saturation Absorption and Thermal Diffusion Manipulation 235
 9.4.1 Formation of Below-Diffraction-Limited Energy Absorption Spot ... 235
 9.4.2 Thermal Diffusion Manipulation by Thermal Conductive Layer ... 242
 9.4.3 Experimental Nanolithography Marks 245
Contents

9.5 Nonlinearity-Induced Super-Resolution Optical Imaging 247
 9.5.1 Basic Principle Schematics 247
 9.5.2 Theoretical Description 247
 9.5.3 Experimental Testing .. 249
9.6 Summary .. 252
References ... 252

Remarks ... 255
Nonlinear Super-Resolution Nano-Optics and Applications
Wei, J.
2015, XI, 256 p. 176 illus., 48 illus. in color., Hardcover
ISBN: 978-3-662-44487-0