Contents

1 **Introduction** .. 1
Brigitte Falkenburg and Margaret Morrison
1.1 Reduction .. 3
1.2 Emergence .. 5
1.3 Parts and Wholes 7

Part I Reduction

2 **On the Success and Limitations of Reductionism in Physics** 13
Hildegard Meyer-Ortmanns
2.1 Introduction 13
2.2 On the Success of Reductionism 15
2.2.1 Symmetries and Other Guiding Principles 15
2.2.2 Bridging the Scales from Micro to Macro 20
2.2.3 When a Single Step Is Sufficient: Pattern Formation in Mass and Pigment Densities 24
2.2.4 From Ordinary Differential Equations to the Formalism of Quantum Field Theory: On Increasing Complexity in the Description of Dynamic Strains of Bacteria 27
2.2.5 Large-Scale Computer Simulations: A Virus in Terms of Its Atomic Constituents 31
2.3 Limitations of Reductionism 33
2.3.1 A Fictive Dialogue For and Against Extreme Reductionism .. 33
2.3.2 DNA from the Standpoint of Physics and Computer Science 35
2.4 Outlook: A Step Towards a Universal Theory of Complex Systems 36
References .. 37
3 On the Relation Between the Second Law of Thermodynamics and Classical and Quantum Mechanics

Barbara Drossel

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>The Mistaken Idea of Infinite Precision</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>From Classical Mechanics to Statistical Mechanics</td>
<td>45</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Standard Argument</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Problems with the Standard Argument</td>
<td>46</td>
</tr>
<tr>
<td>3.3.3</td>
<td>An Alternative View</td>
<td>47</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Other Routes from Classical Mechanics to the Second Law of Thermodynamics</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>From Quantum Mechanics to Statistical Mechanics</td>
<td>49</td>
</tr>
<tr>
<td>3.4.1</td>
<td>The Eigenstate Thermalization Hypothesis</td>
<td>49</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Interaction with the Environment Through a Potential</td>
<td>50</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Coupling to an Environment with Many Degrees of Freedom</td>
<td>51</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Quantum Mechanics as a Statistical Theory that Includes Statistical Mechanics</td>
<td>52</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusions</td>
<td>53</td>
</tr>
<tr>
<td>References & Index</td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

4 Dissipation in Quantum Mechanical Systems: Where Is the System and Where Is the Reservoir?

Joachim Ankerhold

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Dissipation and Noise in Classical Systems</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Dissipative Quantum Systems</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Specific Heat for a Brownian Particle</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Roles Reversed: A Reservoir Dominates Coherent Dynamics</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>Emergence of Classicality in the Deep Quantum Regime</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary and Conclusion</td>
<td>66</td>
</tr>
<tr>
<td>References & Index</td>
<td></td>
<td>67</td>
</tr>
</tbody>
</table>

5 Explanation Via Micro-reduction: On the Role of Scale Separation for Quantitative Modelling

Rafaela Hillerbrand

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Explanation and Reduction</td>
<td>71</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Types of Reduction</td>
<td>72</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Quantitative Predictions and Generalized State Variables</td>
<td>73</td>
</tr>
</tbody>
</table>
5.3 Predicting Complex Systems .. 74
5.3.1 Scale Separation in a Nutshell 75
5.3.2 Lasers .. 76
5.3.3 Fluid Dynamic Turbulence 78
5.4 Scale Separation, Methodological Unification, and Micro-Reduction ... 80
5.4.1 Fundamental Laws: Field Theories and Scale Separation ... 81
5.4.2 Critical Phenomena ... 82
5.5 Perturbative Methods and Local Scale Separation 83
5.6 Reduction, Emergence and Unification 84
References ... 86

Part II Emergence

6 Why Is More Different? ... 91
Margaret Morrison
6.1 Introduction ... 91
6.2 Autonomy and the Micro/Macro Relation: The Problem 93
6.3 Emergence and Reduction ... 96
6.4 Phase Transitions, Universality and the Need for Emergence ... 100
6.5 Renormalization Group Methods: Between Physics and Mathematics .. 107
6.6 Conclusions ... 113
References ... 113

7 Autonomy and Scales .. 115
Robert Batterman
7.1 Introduction ... 115
7.2 Autonomy ... 116
7.2.1 Empirical Evidence .. 117
7.2.2 The Philosophical Landscape 120
7.3 Homogenization: A Means for Upscaling 122
7.3.1 RVEs ... 122
7.3.2 Determining Effective Moduli 125
7.3.3 Eshelby’s Method ... 128
7.4 Philosophical Implications ... 132
References ... 134
8 More is Different...Sometimes: Ising Models, Emergence, and Undecidability ... 137
Paul W. Humphreys
8.1 Anderson’s Claims ... 138
8.2 Undecidability Results ... 140
8.3 Results for Infinite Ising Lattices 141
8.4 Philosophical Consequences 144
8.5 The Axiomatic Method and Reduction 147
8.6 Finite Results .. 150
8.7 Conclusions ... 150
References .. 151

9 Neither Weak, Nor Strong? Emergence and Functional Reduction ... 153
Sorin Bangu
9.1 Introduction ... 153
9.2 Types of Emergence and F-Reduction 154
9.3 Strong or Weak? ... 158
9.4 Conclusion .. 164
References .. 164

Part III Parts and Wholes

10 Stability, Emergence and Part-Whole Reduction 169
Andreas Hüttemann, Reimer Kühn and Orestis Terzidis
10.1 Introduction ... 169
10.2 Evidence from Simulation: Large Numbers and Stability 173
10.3 Limit Theorems and Description on Large Scales 177
10.4 Interacting Systems and the Renormalization Group 180
10.5 The Thermodynamic Limit of Infinite System Size 184
10.6 Supervenience, Universality and Part-Whole-Explanation 188
10.7 Post Facto Justification of Modelling 193
A.1 Renormalization and Cumulant Generating Functions 194
A.2 Linear Stability Analysis 196
References .. 199

11 Between Rigor and Reality: Many-Body Models in Condensed Matter Physics .. 201
Axel Gelfert
11.1 Introduction ... 201
11.2 Many-Body Models as Mathematical Models 202
11.3 A Brief History of Many-Body Models 205
11.4 Constructing Quantum Hamiltonians 209
11.5 Many-Body Models as Mediators and Contributors 214
 11.5.1 Rigorous Results and Relations. 216
 11.5.2 Cross-Model Support ... 217
 11.5.3 Model-Based Understanding 218
11.6 Between Rigor and Reality: Appraising Many-Body Models .. 220
References ... 225

12 How Do Quasi-Particles Exist? ... 227
 Brigitte Falkenburg
 12.1 Scientific Realism ... 228
 12.2 Particle Concepts .. 230
 12.3 Quasi-Particles .. 235
 12.3.1 The Theory .. 235
 12.3.2 The Concept .. 238
 12.3.3 Comparison with Physical Particles 240
 12.3.4 Comparison with Virtual Particles 242
 12.3.5 Comparison with Matter Constituents 243
 12.4 Back to Scientific Realism .. 244
 12.4.1 Are Holes Fake Entities? ... 245
 12.4.2 What About Quasi-Particles in General? 246
 12.5 How Do Quasi-Particles Exist? 248
References ... 249

13 A Mechanistic Reading of Quantum Laser Theory 251
 Meinard Kuhlmann
 13.1 Introduction .. 251
 13.2 What Is a Mechanism? ... 252
 13.3 Quantum Laser Theory Read Mechanistically 253
 13.3.1 The Explanandum .. 253
 13.3.2 Specifying the Internal Dynamics 253
 13.3.3 Finding the System Dynamics 258
 13.3.4 Why Quantum Laser Theory is a Mechanistic Theory .. 260
 13.4 Potential Obstacles for a Mechanistic Reading 262
 13.4.1 Is “Enslavement” a Non-mechanistic Concept? 262
 13.4.2 Why Parts of a Mechanism don’t need to be Spatial Parts ... 264
 13.4.3 Why Quantum Holism doesn’t Undermine Mechanistic Reduction 266
Why More Is Different
Philosophical Issues in Condensed Matter Physics and Complex Systems
Falkenburg, B.; Morrison, M. (Eds.)
2015, X, 280 p. 21 illus., Hardcover
ISBN: 978-3-662-43910-4