Preface

The present PhD thesis develops the Preference-Driven Lead User Method for new product development based on previous theoretical findings and practical experience. It was written during my academic time with Prof. Dr. Daniel Baier at the Brandenburg University of Technology Cottbus-Senftenberg and the University of Bayreuth. In detail, this thesis describes the challenging environment of new product development and highlights particular circumstances in Small- and Medium-sized Enterprises (SMEs). The new method is intended to solve selected challenges, e.g. idea evaluation and selection, by combining multiple activities within new product development to result in an integrated method.

The methodological development begins with a characterisation of the research environment and analyses the traditional lead user method and preference measurement of the new product development process. Particular challenges are discussed and aggregated based on examples from industrial practice. This thesis is intended to contribute to the findings by promoting the Preference-Driven Lead User Method with the background of the research question “Can the lead user method and preference measurement be combined to result in an integrated method for new product development?” The aggregation of idea generation, concept development, and concept evaluation is modelled within one comprehensive method against the actual sequential process.

Observations from the theoretical part point to multiple adjustments that can be made. The presented Preference-Driven Lead User Method makes use of the lead user method to stimulate ideation and links this to preference measurement while using a user-based recommendation algorithm to generate reliable acceptance data for every identified innovative contribution. This is developed as a combined approach and nested within the lead user method.

The new method is employed in the various application fields. The first example covers the field of mountain biking with 104 respondents and indicates heterogeneity in ratings of novelty and market potential. The second one covers industrial IT-security and aims to develop an intrusion prevention system for industrial networks with 246 respondents. The application showed promising results with an increased market potential and a decreased concept novelty. A further survey covered 311 respondents in the business fields of mechanical
The addressed business fields are presented separately with their specific market characteristics. The empirical investigation covers strengths and weaknesses of the lead user method per business field and evaluates the practical applicability of the new method. The results show that the Preference-Driven Lead User Method provides a benefit for future innovation projects.

Writing this thesis was only manageable with the lasting background of my beloved family, my partner Kristin, and our daughter. I am so thankful for your support and for having you in my life!

This thesis would also not be possible without professional guidance. First, I thank Prof. Dr. Daniel Baier for his enduring support, supervision of the thesis, and for his guidance in academia. Second, I thank Prof. Dr. Magdalena Mißler-Behr for her review of this thesis and Prof. Dr. Uwe Meinberg for chairing the evaluation commission. I am much obliged to Dr. Alexandra Rese for her engagement in the commission and for our joint research in the field of Open Innovation. Further, I thank Prof. Dr. Peter Langendörfer and Prof. Dr. Rolf Kraemer for their support at IHP GmbH and our joint engagement in various research topics.

Dr. Sebastian Selka, Dr. Maria Marquardt, Dr. Eva Stüber, Dr. Ines Brusch, Jörgen Eimecke, Richard Bensch, Prof. Dr. Michael Brusch, Jana Krimmling, Stefan Lange and Dr. Said Esber deserve a great thank you. Thank you for all the fruitful talks and discussions, the motivational support, our friendship, and our time together. I also want to thank Project ESCI and its Lead Users. Especially, Dr. Joachim Müller deserves a great thank you for his support concerning the field of IT-Security in Energy Systems and for his trust in the ESCI system.

My team of undergraduate assistants, especially Felix Homfeldt, Philipp Schneider, Michael Keil, Martin Tietz, and Jens Fischer, deserves an outstanding appreciation as well as Beatrice Rich, Josefine Martha Pritschkoleit, Charlotte Irlen, Matthias Pantze, Jakob Levin, Zachery James Devlin, Kosta Shatrov, Franziska Kullak, and Vera Wessolek. Additional, thank you to all students whose scholar theses I were able to supervise. I appreciate your trust in letting me coach you!

Further, I wish all the best to the OUI Community and hope that this thesis will make a significant contribution and stimulates new research topics.
The Preference-Driven Lead User Method for New Product Development
A Comprehensive Way to Stimulate Innovations with Internal and External Sources
Sänn, A.
2017, XXII, 235 p. 20 illus., Softcover
ISBN: 978-3-658-17262-6