Part I Introduction

1 The Research Initiative UR:BAN .. 3
 Eberhard Hipp, Klaus Bengler, Ulrich Kressel, and Stefan Feit
 1.1 Motivation .. 3
 1.2 The UR:BAN Research Initiative 5
 1.3 Relation of UR:BAN to National Research Strategies 7
 1.4 Work Program ... 8
 1.5 Human Factors in Traffic (MV) 8
 1.6 Cognitive Assistance (KA) 13
 1.7 Networked Traffic System (VV) 19

Part II Urban Driving

2 A Meta-perspective on Research Activities in UR:BAN Human Factors
 in Traffic ... 29
 Matthias Graichen, Verena Nitsch, and Berthold Färber
 2.1 Introduction to the Project “Urban Driving” 29
 2.2 Methodological Approach 32
 2.3 Evaluation of Project Results 36
 2.4 Summary and Conclusion 44
 References .. 45

Part III Human-Machine Interaction for Urban Environments

3 Introduction of Human-Machine Interaction for Urban Environments .. 49
 Julia Drüke
4 The “HMI tool kit” as a Strategy for the Systematic Derivation of User-
Oriented HMI Concepts of Driver Assistance Systems in Urban Areas . . 53
Julia Drüke, Carsten Semmler, and Lennart Bendewald
4.1 Introduction .. 53
4.2 HMI Tool Kit ... 54
4.3 Applications of Urban HMI Concepts 69
4.4 Conclusion .. 72
References .. 73

5 HMI Strategy – Warnings and Interventions 75
Susann Winkler, Matthias Powelleit, Juela Kazazi, Mark Vollrath, Wolfgang
Krautter, Andreas Korthauer, Julia Drüke, Daniel Töpfer, Carsten Semmler,
and Lennart Bendewald
5.1 Background ... 75
5.2 Concepts for Warnings and Urgent Warnings
(Technische Universität Braunschweig) ... 77
5.3 Detecting and Warning of Visually Distracted Drivers
(Robert Bosch GmbH) ... 88
5.4 Collision Avoidance by Autonomous Evasive Manoeuvre
(Volkswagen AG and Technische Universität Braunschweig) 95
5.5 Conclusion .. 101
References .. 102

6 HMI Strategy – Lateral and Longitudinal Control 105
Sonja Hofauer, Britta Michel, Sigrun Weise, Anna Julia Karmann, Frank
Diermeyer, Amelie Stephan, Julia Drüke, Carsten Semmler, and Lennart
Bendewald
6.1 Introduction ... 105
6.2 Theoretical Background .. 106
6.3 Implementing the HMI Strategy ... 108
6.4 Conclusion .. 117
References .. 118

7 HMI Strategy – Recommended Action .. 119
Lena Rittger and Martin Götze
7.1 Introduction ... 119
7.2 Definition ... 119
7.3 HMI Concept for a Traffic Light Assistant (Adam Opel AG) 121
7.4 Generic, Integrative HMI Concept for Multiple ADAS (Technical
University of Munich) .. 138
References .. 148
Contents

Part IV Behaviour Prediction and Intention Detection

8 Behaviour Prediction and Intention Detection in UR:BAN VIE – Overview and Introduction ... 153
 Dietrich Manstetten
 8.1 Introduction ... 153
 8.2 Working Steps in UR:BAN VIE 154
 8.3 Summary of Results and Outlook Towards Automated Driving .. 158
 8.4 Outline of Following Chapters 160
 References ... 161

9 Analysing Behavioural Data from On-Road Driving Studies: Handling the Challenges of Data Processing 163
 Matthias Graichen, Verena Nitsch, and Berthold Färber
 9.1 Introduction ... 163
 9.2 Driving at Urban Intersections 164
 9.3 Exploring Behavioural Data from On-Road Driving Studies: Challenges and Solutions .. 167
 9.4 Summary and Conclusion ... 179
 References ... 180

 Felix Schmitt, Andreas Korthauer, Dietrich Manstetten, and Hans-Joachim Bieg
 10.1 Introduction ... 183
 10.2 Distraction and Additional Tasks in Driving 184
 10.3 Approaches to Mitigate Distraction 184
 10.4 Modelling Driver Strategies for Allocation of Visual Attention .. 186
 10.5 Experiment in Real Traffic ... 194
 10.6 Numerical Evaluation ... 197
 10.7 Conclusion ... 202
 References ... 202

11 Lane Change Prediction: From Driver Characteristics, Manoeuvre Types and Glance Behaviour to a Real-Time Prediction Algorithm ... 205
 Matthias Beggiato, Timo Pech, Veit Leonhardt, Philipp Lindner, Gerd Wanielik, Angelika Bullinger-Hoffmann, and Josef Krems
 11.1 Introduction ... 205
 11.2 Methods .. 208
11.3 Results ... 211
11.4 Discussion and Conclusions ... 218
References .. 220

12 **Fusion of Driver Behaviour Analysis and Situation Assessment for Probabilistic Driving Manoeuvre Prediction** ... 223
Veit Leonhardt, Timo Pech, and Gerd Wanielik
12.1 Introduction ... 223
12.2 Preliminary Considerations ... 224
12.3 Recognition of an Intention to Perform a Manoeuvre 226
12.4 Real-Time Application .. 236
12.5 Experimental Results .. 238
12.6 Summary and Conclusions .. 242
References .. 243

13 **Human Focused Development of a Manoeuvre Prediction in Urban Traffic Situations Based on Behavioural Sequences** ... 245
Jens Heine, Ingmar Langer, and Thomas Schramm
13.1 Motivation and Goal ... 245
13.2 Method of Development and State of the Art 247
13.3 Experimental Study ... 249
13.4 Development of an Algorithm for Manoeuvre Prediction 252
13.5 Integration in Demonstrator Vehicle 259
13.6 Use of Driving Manoeuvre Prediction 261
13.7 Conclusion and Outlook ... 262
References .. 263

14 **Application of a Driver Intention Recognition Algorithm on a Pedestrian Intention Recognition and Collision Avoidance System** 267
Frederik Diederichs, Nina Brouwer, Horst Klöden, Peter Zahn, and Bernhard Schmitz
14.1 Driver Intention Recognition for Pedestrian Collision Avoidance Systems ... 267
14.2 Theoretical Concepts of Intention Recognition and their Measurement Potential .. 270
14.3 Measure Driver Intention to Brake 272
14.4 Application and Demonstration for Pedestrian Collision Avoidance System in the Vehicle ... 278
14.5 Outlook: Acceptance and Safety 282
References .. 283
Part V Simulation and Modelling of Road Users’ Behaviour

15 Simulation and Modelling Within the UR:BAN Project 287
 Silja Hoffmann and Fritz Busch

16 Methodology and Results for the Investigation of Interactions Between
 Pedestrians and Vehicles in Real and Controlled Traffic Conditions 291
 Jens Kotte and Andreas Pütz
 16.1 Research Questions and Overall Methodology 291
 16.2 Interaction Study Under Real Traffic Conditions 293
 16.3 Static Traffic Observation Under Real Traffic Conditions 300
 16.4 Interaction Study Under Controlled Traffic Conditions 304
 16.5 Summary 308
 References .. 308

17 Understanding Interactions Between Bicyclists and Motorists
 in Intersections 311
 Mandy Dotzauer, Sascha Knake-Langhorst, and Frank Köster
 17.1 Introduction 311
 17.2 AIM Research Intersection 315
 17.3 Observation of Bicyclist-Motorist Interactions in Intersections 319
 17.4 Findings and Implications 320
 17.5 Further Research 322
 References .. 323

18 Analysis and Modelling of the Operational and Tactical Behaviour
 of Bicyclists .. 325
 Heather Twaddle
 18.1 Motivation 325
 18.2 Data Collection and Processing 328
 18.3 Data Analysis 330
 18.4 Behaviour Modelling 339
 18.5 Discussion and Conclusions 342
 References .. 343

19 Urban Interaction – Getting Vulnerable Road Users
 into Driving Simulation 347
 Christian Lehsing and Ilja T. Feldstein
 19.1 Motivation and Goals – The Situation in 2012 347
 19.2 Social Interaction at a Glance 348
 19.3 Pedestrian Simulators – A Global but Divergent Approach 349
 19.4 Implementing the VRU – The UR:BAN Approach 350
 19.5 The Multiple-Simulator Setting – Enabling Social Interaction 353
20 Encounters Between Drivers with and Without Cooperative Intelligent Transport Systems
Katharina Preuk, Mandy Dotzauer, Frank Köster, and Meike Jipp
20.1 Cooperative Intelligent Transport Systems .. 363
20.2 Why Research Encounters Between Drivers with and Without C-ITS? .. 365
20.3 How to Research Encounters Between Drivers 367
20.4 Encountering Drivers with Traffic Light Assistance Systems:
 Overview of a Study ... 369
20.5 Encounters Between Drivers with and Without C-ITS:
 Open Questions .. 370
 References .. 374

21 The Multi-Driver Simulation: A Tool to Investigate Social Interactions
Between Several Drivers ... 379
Dominik Muehlbacher
21.1 Need for Multi-Driver Simulation? .. 379
21.2 The WIVW Multi-Driver Simulation .. 381
21.3 Study 1: Driver Models vs Human Drivers 382
21.4 Study 2: Single-Driver Simulation vs Multi-Driver Simulation 385
21.5 Conclusion ... 389
 References .. 390

22 A New Approach to Investigate Powered Two Wheelers’ Interactions with
Passenger Car Drivers: the Motorcycle – Car Multi-Driver Simulation 393
Sebastian Will
22.1 Abstract .. 393
22.2 Introduction .. 393
22.3 Simulator Setup: The Motorcycle-Car Multi-Driver Simulation 394
22.4 Study Example: Intersection Support .. 396
22.5 Conclusion ... 401
 References .. 401

23 Multi-Road User Simulation: Methodological Considerations
from Study Planning to Data Analysis ... 403
Dominik Muehlbacher, Katharina Preuk, Christian Lehsing, Sebastian Will,
and Mandy Dotzauer
23.1 Introduction .. 403
23.2 Planning Studies .. 404
23.3 Conducting Studies ... 406
23.4 Analyzing Data .. 409
23.5 Conclusion ... 415
References ... 417

Part VI Controllability and Safety in Use Assessment
of Advanced Driver Assistance Systems

24 Development and Evaluation of Methods to Assess Controllability
and Safety in Use Within the UR:BAN Project 421
Alexandra Neukum and Norbert Schneider

25 Validity of Research Environments – Comparing Criticality Perceptions
Across Research Environments ... 423
Christian Purucker, Norbert Schneider, Fabian Rüger, and Alexander Frey
25.1 Introduction ... 423
25.2 Theoretical Background: Validity of Research Environments 424
25.3 Methodology .. 430
25.4 Results .. 436
25.5 Discussion ... 442
References ... 444

26 Emergency Steering Systems – Controllability Investigations
with the Vehicle in the Loop .. 447
Fabian Rüger and Berthold Färber
26.1 Introduction ... 447
26.2 Emergency Steering Interventions at Occupied Opposite Lanes 449
26.3 Emergency Steering Seen from Oncoming Traffic 452
26.4 Summary ... 458
References ... 459

27 Consideration of the Available Evading Space for the Evaluation
of the Driver Reaction to Emergency Steering Interventions 461
Andreas Pütz
27.1 Introduction and Motivation 461
27.2 Existing Knowledge on the Influence of the Driving Context
in the Controllability Assessment .. 462
27.3 Deduction of Related Research Questions and Hypothesis
for the Experiment .. 463
27.4 Experimental Design for the Evaluation of the Influence of the Available
Evading Space .. 464
27.5 Reaction Patterns to System Initiated Emergency Steering Interventions . 466
27.6 Influence of the Available Evading Space on the Driver Reaction 470
27.7 Influence of a Retraction Possibility on the Driver Reaction 473
27.8 Design of an Exemplary Override Criterion 475
27.9 Conclusions 476
References 477

28 Designing Emergency Steering and Evasion Assist to Enhance Safety in Use and Controllability 479
Norbert Schneider, Guy Berg, Svenja Paradies, Peter Zahn, Alexander Huesmann, and Alexandra Neukum
28.1 Introduction 479
28.2 Intervention Concepts 480
28.3 Actuators 481
28.4 Design Implications Based on Experimental Studies 483
References 492

29 Integrating Different Kinds of Driver Distraction in Controllability Validations 495
Rico Auerswald, Alexander Frey, and Norbert Schneider
29.1 Introduction 495
29.2 Methodological Implications & Recommendations 496
29.3 Case Studies 499
29.4 Conclusion 516
References 517