Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danksagung</td>
<td>V</td>
</tr>
<tr>
<td>Abstract</td>
<td>VII</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>IX</td>
</tr>
<tr>
<td>Contents</td>
<td>XI</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XIII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XV</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

1. **Decomposition Algorithms for Multi-Period Network Design** 7

1. Motivation 11

2. **Strategic Infrastructure Planning in Railway Networks** 15
 2.1. Basic Terminology 15
 2.2. Strategic Track Infrastructure Planning 18
 2.3. The Problem in the Literature 28

3. **Modelling the Expansion Problem** 49
 3.1. Modelling Assumptions 50
 3.2. Input Parameters 53
 3.3. Single-Period Approach 56
 3.4. Multi-Period Approach 59

4. **Model Analysis and Solution Approaches** 67
 4.1. Comparing Models (FMNEP) and (BMNEP) 67
 4.2. A Compact Reformulation of Model (FMNEP) 70
 4.3. Preprocessing of (NEP) and (CFMNEP) 72
 4.4. Decomposition Algorithms 74

5. **Case Study for the German Railway Network** 85
 5.1. Our Planning Software and the Computational Setup 85
 5.2. Evaluating the Models and their Enhancements 88
 5.3. The Germany Case Study 90
Solving Network Design Problems via Decomposition, Aggregation and Approximation
Bärmann, A.
2016, XV, 203 p. 32 illus., 28 illus. in color., Softcover
ISBN: 978-3-658-13912-4