Preface

Associated with increasing demands on system safety and reliability, fault detection (FD) and fault-tolerant control (FTC) have attracted considerable attention in both research and application fields. Due to the continuously increasing system automation, integration and complexity degrees, industrial processes are typically nonlinear. Therefore, developing FD and FTC approaches for nonlinear systems belong definitely to the most remarkable and challenging topics.

This work is devoted to address the analysis and design issues of observer-based FD and FTC for nonlinear systems. In the first part of the thesis, the configuration of nonlinear observer-based FD systems is formulated by parameterizing the residual generators. Based on the parameterization form, the nonlinear observer-based FD systems are parameterized as well as the threshold settings. Furthermore, the existence conditions of the nonlinear observer-based FD systems are studied to gain a deeper insight into the construction of the FD systems.

The second part of the work focuses on the developments of FD schemes by dealing with the proposed conditions with the aid of the Takagi-Sugeno (T-S) fuzzy dynamic modelling techniques. To further improve the FD performance, an alternative fuzzy observer-based approach is proposed by making use of the knowledge provided by the fuzzy models of each local region and weighting the local residual signal by means of different weighting factors. This is motivated by the fact that unlike linear systems with unified dynamics over the whole working range, the local behavior of nonlinear systems can be significantly different.

With the FD system at hand, it is important to re-configure the controller to maintain or recover the system operations after an alarm is given. For this purpose, the third part of the work is dedicated to two FTC configurations for a class of nonlinear systems. The proposed architectures provide an integrated solution that has advantages to make the plant maintenance, repair and operations easier to handle. Finally, the derived FD and FTC approaches are verified by two benchmark
processes. The application results demonstrate the effectiveness of the developed methods.

This work was done while the author was with the institute for Automatic Control and Complex Systems (AKS) at the University of Duisburg-Essen. I would like to give the most sincere thanks to Prof. Dr.-Ing. Steven X. Ding for his guidance to my scientific research work. I am very grateful for all his help, encouragements and insight discussions on this work during the past three years. My sincere appreciation must also go to Prof. Ying Yang for her valuable guidance and discussions on this thesis. I am very grateful for her consistent support and encouragements. I would also like to thank Prof. Jianbin Qiu for all his valuable guidance, discussions and cooperation on the fuzzy fault detection works. I am very grateful for his consistent patience and support.

I would like to thank Kai, Zhiwen, Tim K., Yuri, Hao, Minjia and Svenja for their valuable review and suggestions to my dissertation. My thanks also go to all the AKS colleagues, Shane, Changchen, Sihan, Haiyang, Tim D., Chris, Ali, Christoph, Sabine, Dr. Köppen-Seliger, Eberhard, Klaus, Göbel, Dr. Zhao, Dr. Yang, Prof. Peng and Prof. Lei for their valuable discussion and helpful suggestions.

My special thanks go to my group mate Yong for all his valuable discussions and cooperation. I would like to thank Dongmei for her great support and company. Moreover, I am also grateful to my former colleagues and friends, Hongli, Bo and Shouchao for their valuable support and encouragements. I would also like to thank my friends, Yao and Jing, for their valuable support.

Finally, I would like to dedicate this work to my family, especially my parents, my sister and my brother for understanding and supporting me in whatever I decide to do - especially my husband, Wanjun, for his patience and support.

Linlin Li