Contents

1 Introduction ... 1
 1.1 Motivation ... 1
 1.2 Eukaryotic transcriptional regulation 4
 1.2.1 Transcription factors 7
 1.2.2 Cis-regulatory modules 13
 1.2.3 Complexation is important in development 21
 1.3 Outline and Goal 23

2 Related work ... 25
 2.1 Protein complex prediction from networks 25
 2.1.1 ClusterONE and cohesiveness 27
 2.1.2 Quality measures for complex prediction 30
 2.2 Protein complexes beyond plain networks 34
 2.2.1 Domain-domain interaction model 37
 2.3 Prediction of cooperative TFs 40
 2.3.1 Expression coherence scoring 40

3 Materials and Methods 45
 3.1 Domain-aware cohesiveness optimization 45
 3.1.1 Why seeding from pairs is beneficial 51
 3.2 Data sources, their retrieval and preprocessing ... 53
 3.2.1 General yeast protein data 53
 3.2.2 Weighted protein-protein interaction data 55
 3.2.3 Domain-association and domain-interactions ... 56
 3.2.4 Transcription factors and their binding sites 60
 3.2.5 Expression data 64
 3.2.6 Reference data 65
 3.3 Workflow and implementation 66
 3.3.1 Building the domain-domain interaction network 68
 3.3.2 Domain-aware cohesiveness optimization 69
Results and Discussion

4.1 Impact of algorithm engineering on runtime 90
4.2 Common protein complex prediction benchmarks 91
 4.2.1 Comparison to reference complexes 94
 4.2.2 Assessment of biological relevance 97
 4.2.3 Evaluation of postprocessing and thresholds 98
4.3 Analysis in the transcription factor context 100
 4.3.1 Estimation of target genes 101
 4.3.2 Estimating the modes of action 103
 4.3.3 Significance in yeast cell cycle 106

Conclusion and Outlook

5.1 Conclusion ... 111
5.2 Outlook ... 111

Additional tables

A.1 Supplement to complex prediction benchmarks 113
A.2 Supplement to target analysis 119

Bibliography ... 121
Predicting Transcription Factor Complexes
A Novel Approach to Data Integration in Systems Biology
Will, T.
2015, XIX, 142 p. 29 illus., Softcover
ISBN: 978-3-658-08268-0