Contents

List of Figures .. XIII
List of Tables .. XV
Abbreviations .. XVII

1 Introduction ... 1
 1.1 Request fulfillment of freight forwarding companies 1
 1.2 Objectives and Structure of the Thesis 3

2 Vehicle Routing 7
 2.1 Introduction .. 7
 2.2 Mathematical model for the PDPTW 11
 2.3 Solution approaches for the PDPTW 14
 2.3.1 Exact algorithms ... 15
 2.3.2 Heuristic algorithms 16
 2.4 The ALNS heuristic of Ropke and Pisinger(2006) 17
 2.4.1 General ideas ... 18
 2.4.2 Removal operators ... 19
 2.4.3 Insertion operators ... 20
 2.4.4 Adaptive operator choice 21
 2.4.5 Further settings ... 22

3 Freight Consolidation 25
 3.1 Introduction .. 25
 3.2 Mathematical formulation ... 28
 3.3 Solution methodology ... 31
 3.3.1 A local search heuristic 31
 3.3.2 A simulated annealing heuristic 34
 3.4 Computational experiments .. 37
 3.4.1 Cost function for the freight charge calculation 37
 3.4.2 Test instances .. 39
 3.4.3 Computational results 40
4 From Cherry-Picking to Integrated Operational Transportation Planning

4.1 External transportation resources in subcontracting

4.2 Cherry-Picking

4.3 Integrated operational transportation planning

4.3.1 Literature review

4.3.1.1 Subcontracting vehicle routes

4.3.1.2 Subcontracting requests to common carriers

4.3.1.3 Subcontracting both routes and requests

4.3.2 Mathematical model

4.4 Reducing long-term costs through integrated planning

5 Solution approaches for the integrated operational transportation planning problem

5.1 Adaptive large neighborhood search

5.2 Heuristic II: An iterative approach

5.2.1 A set partitioning model of the IOTPP

5.2.2 Construction of candidate routes

5.2.3 Obtaining integer solutions

5.2.4 Overview of the heuristic

5.3 Computational experiments

5.3.1 Instance generation

5.3.2 Computational results

5.4 Conclusions

6 Collaborative transportation planning

6.1 Introduction

6.2 Design of request exchange mechanisms

6.3 Mathematical formulation

6.4 Request exchange mechanisms in literature

7 A route-based request exchange mechanism for the collaborative transportation planning

7.1 The route-based request exchange mechanism

7.1.1 Preprocessing

7.1.2 Initial route generation

7.1.3 Temporary winner determination
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7.1.4</td>
<td>Iterative route generation</td>
</tr>
<tr>
<td>7</td>
<td>7.1.5</td>
<td>Final winner determination</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>Computational experiments</td>
</tr>
<tr>
<td>7</td>
<td>7.2.1</td>
<td>Test instance generation</td>
</tr>
<tr>
<td>7</td>
<td>7.2.2</td>
<td>Route generator</td>
</tr>
<tr>
<td></td>
<td>7.2.3</td>
<td>Computational results</td>
</tr>
<tr>
<td>7</td>
<td>7.2.4</td>
<td>Discussion of results</td>
</tr>
<tr>
<td>7</td>
<td>7.3</td>
<td>Conclusions</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>Problem definition</td>
</tr>
<tr>
<td>8</td>
<td>8.2</td>
<td>Solution approach for collaborative planning</td>
</tr>
<tr>
<td></td>
<td>8.2.1</td>
<td>Preprocessing</td>
</tr>
<tr>
<td>8</td>
<td>8.2.2</td>
<td>Initial route generation</td>
</tr>
<tr>
<td>8</td>
<td>8.2.3</td>
<td>Temporary winner determination</td>
</tr>
<tr>
<td>8</td>
<td>8.2.4</td>
<td>Iterative route generation</td>
</tr>
<tr>
<td></td>
<td>8.2.5</td>
<td>Final winner determination and flow of payments</td>
</tr>
<tr>
<td>8</td>
<td>8.3</td>
<td>Computational Experiments</td>
</tr>
<tr>
<td></td>
<td>8.3.1</td>
<td>Instance generation</td>
</tr>
<tr>
<td>8</td>
<td>8.3.2</td>
<td>Isolated and centralized planning</td>
</tr>
<tr>
<td></td>
<td>8.3.3</td>
<td>Collaborative planning</td>
</tr>
<tr>
<td>8</td>
<td>8.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>Literature review</td>
</tr>
<tr>
<td>9</td>
<td>9.2</td>
<td>Problem definition</td>
</tr>
<tr>
<td>9</td>
<td>9.3</td>
<td>Solution approaches</td>
</tr>
<tr>
<td></td>
<td>9.3.1</td>
<td>Rolling horizon planning with fixed interval</td>
</tr>
<tr>
<td>9</td>
<td>9.3.2</td>
<td>Request triggered rolling horizon planning</td>
</tr>
<tr>
<td>9</td>
<td>9.3.3</td>
<td>Determination of due requests</td>
</tr>
<tr>
<td></td>
<td>9.3.4</td>
<td>Planning strategies using advanced request information</td>
</tr>
<tr>
<td>9</td>
<td>9.3.5</td>
<td>Identification of requests for exchange</td>
</tr>
<tr>
<td></td>
<td>9.3.6</td>
<td>Extended route-based request exchange mechanism</td>
</tr>
<tr>
<td>9</td>
<td>9.4</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>
10 Computational study on the dynamic collaborative transportation planning

10.1 Test 1: Dynamism of instances .. 127
 10.1.1 Measuring dynamism of instances 127
 10.1.2 Instance generation .. 128
 10.1.3 Simulation results .. 130
10.2 Test 2: Value of advanced request information 132
 10.2.1 Instance generation .. 132
 10.2.2 Simulation settings .. 133
 10.2.3 Results and discussion ... 133
10.3 Test 3: Length of the planning period in $RHP-INT$ 135
 10.3.1 Simulation settings .. 135
 10.3.2 Results and discussion ... 135
 10.3.2.1 Total costs of the solutions .. 136
 10.3.2.2 Cost-savings through CTP ... 138
10.4 Test 4: Length of the planning horizon in $RHP-RT$ 139
 10.4.1 Simulation settings .. 139
 10.4.2 Results and discussion ... 139
 10.4.2.1 Total costs of the solutions .. 139
 10.4.2.2 Comparison between $RHP-INT$ and $RHP-RT$ 140
10.5 Test 5: Planning with high subcontracting costs 141
 10.5.1 Instance adjustment and simulation settings 141
 10.5.2 Results and discussion ... 141
10.6 Conclusions .. 145

11 Conclusions and future research .. 147
 11.1 Summary and conclusions ... 147
 11.2 Outlook of future research ... 150

Bibliography ... 153
Operational Transportation Planning of Modern Freight Forwarding Companies
Vehicle Routing under Consideration of Subcontracting and Request Exchange
Wang, X.
2015, XVIII, 161 p. 34 illus., Softcover
ISBN: 978-3-658-06868-4