Model-driven software development offers the method of choice when it comes to manage complex software production projects. However, these concepts face some obstacles when applied to maintenance of existing software systems. In order to ally such modern methods it is frequently assumed that re-coding cannot be circumvent.

Christian Wagner demonstrates on a real-life example how existing software may be imported into a modern software development suite via application of automatic processes. Thus with modest effort a legacy code turns into a maintainable and expandable code-base. While re-programming would create a risk of introducing new bugs, the automatic conversion of legacy code removes obstacles for further maintenance and development of the code and at the same time conserves the know-how and quality contained within a well-tested proven code. The automatic conversion turn out to be by far more efficient than re-programming. Efficiency coincides with improved reliability of the software implementation process.

The concept of model-driven-software-maintenance which is demonstrated here, is very convincing and therefore hopefully will be widely adopted in the near future. Latest when facing a task which requires the integration of a variety of codes, originating from various frameworks into one single software system, there is probably no way around the methods of model-driven-software-maintenance.

Dr.-Ing. Hans-Georg Pagendarm
Model-Driven Software Migration: A Methodology
Reengineering, Recovery and Modernization of Legacy Systems
Wagner, C.
2014, XXV, 304 p. 95 illus., Softcover
ISBN: 978-3-658-05269-0