Contents

1 Introduction 1
 1.1 Registration in pulmonary image analysis 3
 1.2 Objectives 5
 1.3 Structure of this thesis 6
 1.4 Publications 7

2 Current methods for lung registration 9
 2.1 Intensity-based registration techniques 10
 2.1.1 Transformation models 12
 2.1.2 Regularization approaches 13
 2.1.3 Distance measures 14
 2.1.4 Algorithmic solutions 15
 2.2 Open-source implementations 15
 2.3 Discussion 16

3 Variational image registration 17
 3.1 Image registration as a minimization problem 17
 3.1.1 The Euler-Lagrange equation 18
 3.1.2 Discretization and stability considerations 20
 3.1.3 Multi-scale registration 21
 3.2 Distance Measures 22
 3.2.1 (Normalized) Sum of Squared Differences 22
 3.2.2 Other distance measures 23
 3.3 Regularizer 24
 3.3.1 Diffusion regularization 24
 3.3.1.1 Stability properties of the explicit scheme 25
 3.3.1.2 Diffusion regularization with Fast Explicit Diffusion 26
 3.3.1.3 Additive Operator Splitting for semi-implicit solution 27
 3.3.2 Elastic regularization 28
 3.3.2.1 Stability properties of the explicit scheme 28
 3.3.2.2 Semi-implicit solution in the frequency domain 29
 3.3.3 Gaussian smoothing 30
 3.3.4 Other regularization approaches 30
 3.4 Diffeomorphic registration 31
3.4.1 Symmetrization of forces ... 33
3.5 Experiments .. 33
 3.5.1 Comparison of force domains 34
 3.5.2 Comparison of regularizers 35
 3.5.3 Comparison of solution schemes 35
 3.5.4 Comparison of standard and diffeomorphic registration ... 36
3.6 Discussion .. 36

4 Variational level set segmentation 39
 4.1 Region-based level set segmentation 39
 4.1.1 Internal and external energy terms 41
 4.1.2 Numerical solution .. 42
 4.1.3 Implementation .. 43
 4.1.4 Experiments .. 43
 4.2 Extended energy terms for problem-specific modeling 44
 4.2.1 Prior shape information for segmentation refinement ... 45
 4.2.2 Edge attraction terms 45
 4.2.3 Experiments .. 47
 4.3 Level sets with multiple objects 47
 4.3.1 Experiments .. 48
 4.4 Discussion ... 48

5 Lung registration with explicit interlobular fissure alignment . 51
 5.1 Combining registration and segmentation 53
 5.1.1 Current methods for integrated registration and segmentation 53
 5.1.2 A variational model for integrated registration and segmentation 54
 5.1.3 Numerical solution .. 56
 5.1.4 Experiments .. 56
 5.2 Pulmonary lobe segmentation using level sets 57
 5.2.1 Current methods for lung and lobe segmentation 57
 5.2.2 Extension of the region-based level set framework for lobe segmentation 59
 5.2.2.1 Fissure-attraction term for lobe segmentation 59
 5.2.3 Experiments .. 60
 5.3 Integrated registration with pulmonary lobe segmentation 61
 5.3.1 Experiments .. 61
 5.4 Discussion ... 63

6 Sliding motion in image registration 65
 6.1 Masked Registration .. 66
 6.2 Direction-Dependent Regularization 67
 6.2.1 A direction-dependent regularization model 69
6.2.1.1 Discretization and numerical stability of the DDR scheme

6.2.2 DDR with automatic detection of discontinuous motion

6.2.3 DDR with multiple objects for modeling lobe sliding

6.3 Experiments

6.4 Discussion

7 Evaluation with clinical image data

7.1 Materials and methods

7.1.1 Practical aspects of CT imaging

7.1.2 Considered image data

7.1.3 Metrics for evaluation of segmentation and registration results

7.2 Problem-specific composition of algorithms for lung registration

7.2.1 Implementation details

7.2.2 Intra-patient registration of 4D images for motion estimation

7.2.3 Intra-patient registration: The EMPIRE10 study

7.2.4 Inter-patient registration for atlas generation

7.2.5 Discussion

7.3 Evaluation of lobe segmentation with level sets

7.3.1 Estimation of greyvalue distributions

7.3.2 Atlas-based initialization of the segmentation

7.3.3 Study setup

7.3.4 Results

7.3.5 Discussion

7.4 Evaluation of registration with fissure alignment

7.4.1 Study setup

7.4.2 Results

7.4.3 Discussion

7.5 Evaluation of motion estimation with DDR

79

7.5.1 Study setup ... 116
7.5.2 Results .. 116
7.5.3 Discussion ... 122

8 Conclusions .. 125
 8.1 Contributions .. 125
 8.2 Perspectives ... 128
 8.2.1 Optimization of the underlying registration algorithm 128
 8.2.2 Improvement of pulmonary fissure alignment 129
 8.2.3 Extensions of sliding motion modeling 129

A On digital images .. 131

B Mathematical derivations 133
 B.1 Calculus of variations 133
 B.1.1 Derivation of the Euler-Lagrange equation 133
 B.1.1.1 Multi-dimensional functions 134
 B.1.1.2 Functions of several variables 135
 B.1.2 Derivation of registration terms 135
 B.1.2.1 Sum of Squared Differences 135
 B.1.2.2 Diffusion regularization 136
 B.1.2.3 Anisotropic diffusion regularization 137
 B.1.2.4 Direction-dependent regularization 137
 B.1.3 Derivation of segmentation terms 139
 B.1.3.1 Internal energy ... 140
 B.1.3.2 External energy .. 141
 B.1.3.3 Prior shape term .. 141
 B.1.3.4 Gradient term .. 142
 B.1.4 Derivation of the terms of the joint framework 142
 B.2 Derivation of DDR 143

C Supplementary results 145

List of Notations .. 147

Bibliography .. 149
Registration Methods for Pulmonary Image Analysis
Integration of Morphological and Physiological Knowledge
Schmidt-Richberg, A.
2014, XVI, 168 p. 48 illus., 14 illus. in color., Softcover
ISBN: 978-3-658-01661-6