Contents

Part I Introduction

1 Research Background .. 3
 1.1 General Background .. 3
 1.1.1 Mercury Pollution is One of China’s Major
 Environmental Problems 3
 1.1.2 SINOMER Project ... 4
 1.2 Physical and Chemical Properties of Mercury
 and Selenium .. 5
 1.2.1 Physical and Chemical Properties of Mercury 5
 1.2.2 Physical and Chemical Properties of Selenium 7
 1.3 Environmental Toxicology of Mercury and Selenium 7
 1.3.1 Toxicity and Health Risks of Mercury Exposure 7
 1.3.2 Toxicity and Health Benefits/Risks
 of Selenium Exposure ... 11
 1.4 Evidence for Topic Selection ... 12
 1.4.1 Selenium is a Natural Mercury Antagonist 12
 1.4.2 Selenium Pollution in Hg Mining Areas
 must be Considered ... 12
 References .. 14

2 Advances in Research on the Mechanisms of Selenium–Mercury
 Interactions and Health Risk Assessment 17
 2.1 Selenium–Mercury Interactions and Their Mechanisms
 in Aquatic Ecosystems ... 18
 2.2 Selenium–Mercury Interactions and Their Mechanisms
 in Terrestrial Ecosystems ... 20
 2.3 Mechanisms of Selenium–Mercury Interactions
 in Mammals (and Humans) ... 22
 2.3.1 Protective Effects of Selenium Against Mercury
 Toxicity and the Mechanisms Thereof 22
 2.3.2 Implications of the Physiological Significance
 and Metabolic Processes of Selenium
 for the Toxicity of Mercury Exposure 26
2.4 New Model for the Assessment of the Health Risks of Mercury and a Relevant Proposal 27
References ... 30

3 Research Subject, Methods and Significance 35
3.1 Research Subject ... 35
3.2 Methods ... 35
 3.2.1 Sample Collection and Preparation 35
 3.2.2 Analytical Method 39
3.3 Significance of this Study 44
References ... 44

4 Overview of the Study Area (Wanshan) 47
4.1 Study Area .. 47
4.2 Overview of Mine Area 47
4.3 Geomorphology and Climate 49
4.4 Water System in the Mine Area 50
4.5 Agriculture and Population in the Mine Area 50
4.6 Geology of the Area .. 51
References ... 51

Part II Biogeochemical Cycles of Mercury and Selenium and Their Interactions in River System

5 Biogeochemical Cycles of Mercury in River System 55
5.1 Speciation, Tempo-Spatial Distribution and Migration of Total Mercury .. 55
 5.1.1 Total Mercury ... 55
 5.1.2 Particulate Mercury, Total Suspended Solid, SO$_4^{2-}$ and Ca$^{2+}$ 64
 5.1.3 Dissolved Mercury ... 66
 5.1.4 Reactive Mercury ... 67
5.2 Speciation, Tempo-Spatial Distribution and Migration of Methylmercury 68
 5.2.1 Unfiltered Methylmercury 68
 5.2.2 Ratio of Methylmercury to Total Mercury (%MeHg) ... 75
 5.2.3 Dissolved- and Particulate- Methylmercury 76
5.3 Chapter Summary ... 79
 5.3.1 Total Mercury ... 79
 5.3.2 Methylmercury .. 80
References ... 80
6 Biogeochemical Cycles of Selenium in River System 83
 6.1 Distribution, Source and Migration of Dissolved Total Selenium 84
 6.1.1 The Regional Distribution in Surface Water 84
 6.1.2 Potential Sources ... 84
 6.1.3 The Local Background Concentrations 88
 6.1.4 Comparison with Other Regions 88
 6.1.5 Relationship with Sulfate, pH, and DOC 89
 6.2 Distribution and Migration Characteristics of Selenium Speciation 90
 6.2.1 Se(VI) .. 90
 6.2.2 Se(IV) ... 92
 6.2.3 Se(org) ... 93
 6.3 Risk Consideration .. 93
 6.3.1 River Water ... 93
 6.3.2 Spring Water ... 94
 6.4 Chapter Summary .. 95
References ... 95

7 Interactions of Mercury and Selenium in River System 99
References ... 101

Part III Biogeochemical Cycles of Mercury and Selenium and Their Interactions in Soil-Rice System

8 Biogeochemical Cycles of Mercury in Soil-Rice System 105
 8.1 Mercury in Paddy Soil .. 105
 8.2 Mercury in Rice Grain ... 106
 8.3 Relationship Between Mercury in Rice and in Soil 107
 8.4 Mercury Distribution in Different Parts of Rice 113
 8.5 Chapter Summary ... 114
References ... 115

9 Biogeochemical Cycles of Selenium in Soil-Rice System 117
 9.1 Selenium in Soil ... 118
 9.2 Selenium in Rice Grain .. 122
 9.3 Relationship Between Selenium in Rice and in Soil 123
 9.4 Selenium Distribution in Different Parts of Rice 125
 9.5 Fractionation of the Selenium in Soil 125
 9.5.1 Water-Soluble Selenium .. 125
 9.5.2 Ligand-Exchangeable Selenium 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.3 Organic-Bound Selenium</td>
<td>128</td>
</tr>
<tr>
<td>9.5.4 Fe/Mn/Al Oxide-, Amorphous Material-, Hydrate- and Carbonate-Bound Selenium</td>
<td>129</td>
</tr>
<tr>
<td>9.5.5 Sulfide-Bound Selenium</td>
<td>129</td>
</tr>
<tr>
<td>9.5.6 Residual-Bound Selenium</td>
<td>130</td>
</tr>
<tr>
<td>9.6 Chapter Summary</td>
<td>130</td>
</tr>
<tr>
<td>References</td>
<td>131</td>
</tr>
</tbody>
</table>

10 Interactions of Mercury and Selenium in Soil-Rice System | 135 |
10.1 Selenium Levels Versus Mercury Levels in Grains	135
10.2 Selenium Levels Versus Mercury Levels in Soil	137
10.3 Selenium Translocation Versus Mercury Translocation in Soil-Rice System	137
10.4 Distribution Pattern of Selenium Versus that of Mercury in Different Parts of Rice	137
10.5 Possible Mechanisms of Formation of Hg–Se Complex in Rhizosphere/Root	140
10.6 Suppression Effect of Selenium on Uptake and Translocation of Mercury in Rice	141
10.7 Impacts of Mercury on the Bioavailability of Selenium in Paddy Soil	145
10.8 Chapter Summary	146
References	147

Part IV Health Risk Assessment for Human Exposure to Mercury and Selenium | |

11 Health Risk Assessment for Human Exposure to Mercury | 153 |
11.1 Calculation of Probable Daily Intake	153
11.2 Mercury Levels in Different Exposure Media.	155
11.3 Probable Daily Intake Levels	155
11.4 Contributions to Mercury Exposure form Different Media	156
11.5 Risk Considerations	156
11.6 General Characteristics of Mercury Exposure	158
11.7 Food Consumption Advisories	160
11.8 Percentage of Total Population Under Potential Health Risk	161
11.9 Comments on Criteria of Mercury Risk Assessment	161
11.10 Chapter Summary	162
References	163
Part V Conclusions and Prospect

14 Conclusions
- River System
- Rice-Soil System
- Risk Considerations

15 Research Needs and Future Outlook
Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas
Zhang, H.
2014, XXII, 193 p. 54 illus., 16 illus. in color., Hardcover
ISBN: 978-3-642-54918-2