1 Future Trends of Virtual, Augmented Reality, and Games for Health
Minhua Ma, Lakhmi C. Jain and Paul Anderson
1.1 Introduction ... 1
1.2 Chapters Included in the Book 2
1.3 Future Trends of VR, AR, and Games for Health 5
1.3.1 Location-Based Excergaming 5
1.3.2 Mobile Apps .. 5
1.3.3 Social Media Gaming for Public Health 5
References ... 6

Part I Applications in Healthcare Education

2 Healthcare Training Enhancement Through Virtual Reality
and Serious Games ... 9
Sandrine de Ribaupierre, Bill Kapralos, Faizal Haji, Eleni Stroulia,
Adam Dubrowski and Roy Eagleson
2.1 Introduction: Games and Simulation in Medical Education 10
2.2 Does Video Game Proficiency Correlate with Surgical Skill? 17
2.3 Serious Games for Patient Education 17
2.4 Games and Play: Structured Learning Versus Entertainment 18
2.5 Hierarchical Task Analysis for Game Scenario Design 21
2.6 Knowledge Level, Procedural Levels, and Basic Skills Level 22
2.7 Conclusions ... 23
References ... 24

3 A Haptic-Based Virtual Reality Head and Neck Model
for Dental Education 29
Paul Anderson, Minhua Ma and Matthieu Poyade
3.1 Introduction ... 30
3.2 Haptics in Dental Training 32
3.3 Development of Head and Neck Anatomy 34
3.3.1 Data Construction 36
3.3.2 Data Acquisition 37
4 In Virtuo Molecular Analysis Systems: Survey and New Trends 51
Guillaume Bouyer, Samir Otmane and Mouna Essabbah
4.1 Introduction ... 51
4.2 From In Silico to In Virtuo Analysis in Molecular Biology 53
4.2.1 3D Modeling 54
4.2.2 Visualization 58
4.2.3 3D User Interaction 60
4.3 Discussion .. 69
4.3.1 Classification According to Visual Immersion
and Multimodal Rendering 69
4.3.2 Contribution of VR Techniques for Molecular
Biology .. 71
4.3.3 Towards a Hybrid Approach 73
4.4 Conclusion .. 74
References ... 75

5 Kinect-based Gesture Recognition in Volumetric Visualisation
of Heart from Cardiac Magnetic Resonance (CMR) Imaging 79
Ahmad Hoirul Basori, Mohamad Rafiq bin Dato’ Abdul Kadir,
Rosli Mohd Ali, Farhan Mohamed and Suhaini Kadiman
5.1 Introduction ... 80
5.2 Related Works 80
5.3 Arm and Finger Gestural Input on 3D Holographic
Interactive Heart Simulation 81
5.3.1 Hand Segmentation 82
5.3.2 Fingertip Identification 82
5.3.3 Gestural Identification 83
5.3.4 Interaction Flow 84
5.4 Experimental Result of Holographic Visualization
and Interaction Control 84
5.4.1 Environment Details 87
5.4.2 Scenario A 87
5.4.3 Scenario B 87
5.4.4 Scenario C 88
5.4.5 Scenario D 88
5.5 Conclusion .. 90
References ... 91
6 Designing Simulations for Health Managers in Sub-Saharan African Countries: Adherence to eHealth Services

Miia Parnaudeau and Hervé Garcia

6.1 Health Practices and eHealth services’ Adoption in Question

6.1.1 Health Financing Impacts Governance in SSA

6.1.2 More than Resistance to Change Issues

6.2 A Game Scenario Constructed as an Experimental Tool for Research

6.2.1 Pre-simulation Original Objectives

6.2.2 Decision Tree and Game Mechanics

6.2.3 Debriefing

References

7 Using Visualisation for Disruptive Innovation in Healthcare

Daniel Steenstra and John Ahmet Erkoyuncu

7.1 Introduction

7.2 Innovating Healthcare

7.2.1 Healthcare Challenges

7.2.2 Healthcare Reforms

7.2.3 Healthcare System and Stakeholders

7.2.4 Integrated Care and Care Pathways

7.2.5 Innovation Challenges

7.3 Disruptive Innovation and Healthcare

7.3.1 Types of innovation

7.3.2 Disruptive Innovation in Healthcare

7.4 Visualisation of Healthcare Systems

7.4.1 Need for Visualisation

7.4.2 Literature Review

7.4.3 Specification for Visualisation Systems

7.5 Conceptual Visualisation Technologies

7.5.1 GE Vscan Exemplar Disruptive Innovation

7.5.2 Scope and Roadmap

7.5.3 Mapping Alternative Pathways and Business Models

7.5.4 Analysing Costs and Benefits

7.5.5 Decision Support System

7.5.6 Prototype Development

7.5.7 Discussion

7.6 Future Developments

7.6.1 Mapping and Evaluating Pathways

7.6.2 Decision Support System

7.6.3 Developing Disruptive Healthcare Innovation

7.6.4 Healthcare Systems Design

7.7 Conclusion

References
Part II Nursing Training, Health Literacy, and Healthy Behaviour

8 Virtual Simulations and Serious Games in Community Health Nursing Education: A Review of the Literature

Pamela Stuckless, Michelle Hogan and Bill Kapralos

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>146</td>
</tr>
<tr>
<td>8.1.1 Review Method</td>
<td>148</td>
</tr>
<tr>
<td>8.2 Perceptions of Games in Learning</td>
<td>149</td>
</tr>
<tr>
<td>8.3 Designing and Integrating Virtual Simulations into the Nursing Curriculum</td>
<td>150</td>
</tr>
<tr>
<td>8.4 Assessment of Student Learning</td>
<td>151</td>
</tr>
<tr>
<td>8.5 Evaluation of Learning Outcomes</td>
<td>153</td>
</tr>
<tr>
<td>8.6 Discussion</td>
<td>154</td>
</tr>
<tr>
<td>8.6.1 Limitations and Future Work</td>
<td>155</td>
</tr>
<tr>
<td>8.7 Conclusions</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>156</td>
</tr>
</tbody>
</table>

9 Facilitating Learning Through Virtual Reality Simulation: Welcome to Nightingale Isle

Jone M. Tiffany and Barbara A. Hoglund

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction/Overview</td>
<td>159</td>
</tr>
<tr>
<td>9.1.1 The Virtual World of Second Life™</td>
<td>160</td>
</tr>
<tr>
<td>9.2 Nightingale Isle</td>
<td>161</td>
</tr>
<tr>
<td>9.2.1 Nightingale Hospital</td>
<td>162</td>
</tr>
<tr>
<td>9.2.2 South Street Clinic</td>
<td>165</td>
</tr>
<tr>
<td>9.3 Theoretical Framework Supporting VRS: Constructivism</td>
<td>167</td>
</tr>
<tr>
<td>9.3.1 Scaffolding</td>
<td>168</td>
</tr>
<tr>
<td>9.4 The Virtual Reality Simulation Educational Model: Using a Constructivist Framework to Enhance Clinical Reasoning</td>
<td>168</td>
</tr>
<tr>
<td>9.5 Using the Virtual Reality Simulation Educational Model: Public Health VRS</td>
<td>170</td>
</tr>
<tr>
<td>9.5.1 Implementation of the VRS</td>
<td>171</td>
</tr>
<tr>
<td>9.5.2 Goal of the Public Health VRS</td>
<td>172</td>
</tr>
<tr>
<td>9.6 Conclusion</td>
<td>172</td>
</tr>
<tr>
<td>References</td>
<td>173</td>
</tr>
</tbody>
</table>

10 Improving Health Information Literacy with Games in the Virtual World of Second Life

Elisabeth Jacobsen Marrapodi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>175</td>
</tr>
<tr>
<td>10.2 Background</td>
<td>176</td>
</tr>
<tr>
<td>10.3 Setting</td>
<td>177</td>
</tr>
<tr>
<td>10.4 Design</td>
<td>178</td>
</tr>
<tr>
<td>10.5 Data</td>
<td>181</td>
</tr>
<tr>
<td>10.6 Challenges and Lessons</td>
<td>182</td>
</tr>
</tbody>
</table>
11 Urban Exergames: How Architects and Serious Gaming Researchers Collaborate on the Design of Digital Games that Make You Move

Martin Knöll, Tim Dutz, Sandro Hardy and Stefan Göbel

11.1 Motivation ... 191
11.2 The Road Behind: Influences on Urban Exergames 193
11.2.1 Mobile Exergames 193
11.2.2 Location-Based Games. 195
11.2.3 Active Design 196
11.2.4 Other Influential Factors 198
11.3 The Road Ahead: Creating Urban Exergames 199
11.3.1 What Makes an Urban Exergame 200
11.4 Towards Urban Exergaming 202
11.5 Discussion and Outlook 205

References ... 206

12 Leveraging Play to Promote Health Behavior Change: A Player Acceptance Study of a Health Game

Shree Durga, Magy Seif El-Nasr, Mariya Shiyko, Carmen Sceppa, Pamela Naab and Lisa Andres

12.1 Games and Health: Opportunities and Challenges 210
12.1.1 Gamification and Long-Term Health Outcomes 210
12.1.2 Research Questions and Objectives 211
12.2 Previous Research in Games and Health-Behavior Change . 212
12.2.1 Exercise Through Exergaming 212
12.2.2 Games to Increase Awareness About Nutrition 212
12.2.3 Gamification and Persuasive Games 213
12.2.4 Games and Health-Related Social Behavior 213
12.3 Study Design .. 214
12.3.1 SpaPlay: The Game and Core Design Principles 214
12.3.2 The Virtual Island 215
12.3.3 Sparks ... 215
12.3.4 Quests .. 216
12.3.5 Player Profile Visualization and Real-Time Feedback from Activity Sensors 217
12.3.6 Social Play 218
12.3.7 Participant Recruitment and Interviewing Methods 218
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.8</td>
<td>Game telemetry and Individualized In-Person Interviews</td>
<td>219</td>
</tr>
<tr>
<td>12.3.9</td>
<td>Telemetry-Based Individualized Interviews</td>
<td>219</td>
</tr>
<tr>
<td>12.4</td>
<td>Findings</td>
<td>220</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Patterns Observed within Quests Completed by Participants</td>
<td>221</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Patterns Observed within Sparks Completed by Participants</td>
<td>222</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Distribution of Player Game Activity</td>
<td>223</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Emergent Themes from Interviews and How they Explain Patterns from Game Telemetry</td>
<td>223</td>
</tr>
<tr>
<td>12.5</td>
<td>Discussion</td>
<td>226</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusions and Implications for Future Work</td>
<td>228</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>229</td>
</tr>
</tbody>
</table>

Part III Applications in Neuropsychology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Virtual Reality for Neuropsychological Assessment</td>
<td>233</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>234</td>
</tr>
<tr>
<td>13.2</td>
<td>Neuropsychological Tests Using Virtual Reality</td>
<td>237</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Attention</td>
<td>237</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Spatial Attention: Hemineglect</td>
<td>240</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Learning and Memory</td>
<td>242</td>
</tr>
<tr>
<td>13.3</td>
<td>Prospective Memory Evaluation</td>
<td>243</td>
</tr>
<tr>
<td>13.4</td>
<td>Spatial Orientation and Spatial Memory Evaluation</td>
<td>244</td>
</tr>
<tr>
<td>13.5</td>
<td>Episodic Memory Evaluation</td>
<td>246</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Executive Functions</td>
<td>247</td>
</tr>
<tr>
<td>13.6</td>
<td>Conclusions</td>
<td>250</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>The Role of Virtual Reality in Neuropsychology: The Virtual Multiple Errands Test for the Assessment of Executive Functions in Parkinson’s Disease</td>
<td>257</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>258</td>
</tr>
<tr>
<td>14.2</td>
<td>The Role of Virtual Reality in Neuropsychology: Opportunities and Challenges</td>
<td>259</td>
</tr>
<tr>
<td>14.2.1</td>
<td>A New Platform for Neuropsychological Assessment and Rehabilitation: NeuroVR</td>
<td>260</td>
</tr>
<tr>
<td>14.3</td>
<td>From Multiple Errands Test to Virtual Multiple Errands Test</td>
<td>262</td>
</tr>
<tr>
<td>14.3.1</td>
<td>The Virtual Multiple Errands Test</td>
<td>264</td>
</tr>
<tr>
<td>14.3.2</td>
<td>The Potentiality of the VMET for Neuropsychology</td>
<td>266</td>
</tr>
</tbody>
</table>
14.4 The Potentiality of the VR in the Assessment of Executive Functions in Parkinson’s Disease: A Possible Approach 267
14.4.1 The Virtual Multiple Errands Test for the Assessment of Executive Functions in Parkinson’s Disease 268
14.5 Conclusion ... 269
References ... 271

15 NeuroVirtual 3D: A Multiplatform 3D Simulation System for Application in Psychology and Neuro-Rehabilitation 275
Cipresso Pietro, Serino Silvia, Pallavicini Federica, Gaggioli Andrea and Riva Giuseppe
15.1 Introduction ... 275
15.2 NeuroVirtual 3D Platform: Main Issues and Aims 276
15.3 The Scientific-Technological State of the Art 277
15.4 Interfaces Development for Input/Output Hardware Devices for Applications in Neurorehabilitation (e.g. Dataglove, Haptic Devices, Kinect) 278
15.4.1 Integration with Eye-Tracking Devices 280
15.4.2 Development of Multi-User Interaction and Communication Through Avatars 280
15.4.3 Development of the Ability to Display 3D Content on Mobile Devices 281
15.4.4 Development of an Online Repository of 3D Scenes for the Sharing of the Environments Among the Software Users 281
15.5 The Clinical Use of Virtual Reality 281
References ... 283

Part IV Applications in Motor Rehabilitation

16 Rehabilitation at Home: A Comprehensive Technological Approach 289
N. Alberto Borghese, David Murray, Anisoara Paraschiv-Ionescu, Eling D. de Bruin, Maria Bulgheroni, Alexander Steblin, Andreas Luft and Carlos Parra
16.1 Introduction ... 290
16.2 Methodology ... 292
16.2.1 Rehabilitation Needs 292
16.2.2 Exergame Design 294
16.2.3 IGER Structure .. 299
16.2.4 Patient Tracking 301
16.2.5 Assessment of the Exercises and Support to Patients Through a Virtual Community 303
16.2.6 Assessment of Rehabilitation Effectiveness Through Everyday Life Activities 305
16.2.7 Impact on the Health Provider Side 306
16.3 Results and Discussion 309
16.3.1 Rehabilitation Needs and Specifications 309
16.3.2 Implementation of REWIRE Components 312
16.4 Conclusion .. 316
References ... 316

17 The Use of the Nintendo Wii in Motor Rehabilitation for Virtual Reality Interventions: A Literature Review 321
Emmanuel Tsekleves, Alyson Warland, Cherry Kilbride, Ioannis Paraskevopoulos and Dionysios Skordoulis
17.1 Introduction ... 322
17.2 Technical Characteristics of the Nintendo Wii 323
17.2.1 The Nintendo Wii Remote (Wiimote) 323
17.2.2 The Nintendo Balance Board 324
17.3 Review of Literature 325
17.3.1 Search Methodology. 325
17.4 Summary Findings 327
17.5 Advantages and Limitations of the Nintendo Wii in Rehabilitation ... 329
17.5.1 Technical Advantages and Limitations 330
17.5.2 Clinical Advantages and Limitations 334
17.5.3 Potential of Using the Nintendo Wii in Rehabilitation ... 335
17.6 Conclusion .. 339
References ... 340

18 A State of the Art Survey in the Use of Video Games for Upper Limb Stroke Rehabilitation 345
Owen O’Neil, Christos Gatzidis and Ian Swain
18.1 Introduction ... 345
18.2 Upper Limb Impairment and Therapy in Stroke 347
18.3 Video Game Design in Upper Limb Stroke Research 348
18.4 Robotics and Video Games in Upper Limb Stroke Research . 350
18.5 Virtual Reality and Custom Upper Limb Video Games 354
18.5.1 Commercial Off-the-Shelf Video Games for Upper Limb Stroke Rehabilitation 358
18.5.2 Commercial Off-the-Shelf Video Game Systems as Rehabilitation Tools 361
18.6 Conclusions and Future Work 363
References ... 364
19 The Use of Qualitative Design Methods in the Design, Development and Evaluation of Virtual Technologies for Healthcare: Stroke Case Study

David Loudon, Anne Taylor and Alastair S. Macdonald

19.1 Introduction: The Role of Design Methods in Delivering Patient-Centred Innovation

19.2 The Healthcare Context: The Potential Value of Biomechanical Analysis for Stroke Rehabilitation

19.2.1 The Current Use of Biomechanics in Healthcare

19.2.2 Widening the Use of Biomechanics: The Potential Use of Visualisation Software in Stroke Rehabilitation

19.3 Evolution of Visualisation of Biomechanical Data Through Design Methods: Phases 1 and 2

19.3.1 Phase 1: The Prototype Visualisation Tool

19.3.2 Phase 2: Evaluating the Potential of the Visualisation Method with People

19.4 Investigation of Visualisation Software in Stroke Rehabilitation Using Qualitative Design Methods: Phase 3

19.4.1 Intention

19.4.2 Process

19.4.3 Approach to the Visualisations

19.4.4 Qualitative Feedback Process

19.4.5 The Methodological Framework

19.5 Discussion

19.6 Conclusions

References

20 Toward an Automatic System for Training Balance Control Over Different Types of Soil

Bob-Antoine J. Menelas and Martin J. D. Otis

20.1 Introduction

20.2 Related Work

20.3 Proposed Game

20.3.1 Apparatus

20.3.2 Metaphors Used for the Displacement in the Game

20.3.3 Balance Control: Assessment and Training

20.3.4 Different Levels of Difficulty

20.3.5 Score

20.3.6 Safety Issue

20.4 Initial Experiment

20.4.1 Participants and Apparatus

20.4.2 Results

20.5 Conclusion and Future Work

References
Part V Therapeutic Games Aimed at Various Diseases

21 Computer Games Physiotherapy for Children with Cystic Fibrosis
 Andreas Oikonomou, Dan Hartescu, David Day and Minhua Ma
 21.1 Introduction ... 412
 21.2 Previous Work .. 413
 21.2.1 Airway Clearance Therapies 413
 21.2.2 Breathing Therapies for Children with
 Cystic Fibrosis 413
 21.2.3 Adding Play Elements to Therapy 414
 21.2.4 Switching to Digital Games 416
 21.2.5 Existing Games for Cystic Fibrosis 417
 21.2.6 Building on Our Previous Work 419
 21.3 Materials and Methods 420
 21.3.1 Gaming Hardware 420
 21.3.2 Collecting Game Data 423
 21.3.3 Collecting Player Feedback 425
 21.4 Game Development 426
 21.4.1 The Target Audience 427
 21.4.2 Artistic Style 427
 21.4.3 Game Metaphors 428
 21.4.4 Pressure Mechanics 429
 21.4.5 The Cystic Fibrosis Games 430
 21.5 Results ... 436
 21.5.1 Control Data 437
 21.5.2 Game Statistics 437
 21.6 Data Analysis and Conclusions 441
 21.7 Limitations and Future Work 442
 References ... 442

22 Immersive Augmented Reality for Parkinson Disease Rehabilitation
 A. Garcia, N. Andre, D. Bell Boucher, A. Roberts-South,
 M. Jog and M. Katchabaw
 22.1 Introduction ... 446
 22.1.1 Augmented Reality in This Context 447
 22.1.2 Goals of this Work 450
 22.1.3 Chapter Outline 451
 22.2 Related Work .. 451
 22.2.1 Registration and Tracking 451
 22.2.2 Natural Selection and Manipulation 452
 22.2.3 Navigation 453
22.2.4 Virtual Environments in Parkinson Disease Research .. 454
22.2.5 Discussion .. 455
22.3 System Design and Development ... 455
 22.3.1 Hardware .. 456
 22.3.2 The Physical Space 456
 22.3.3 Software .. 457
22.4 Experiment Protocol .. 460
 22.4.1 Watering the Plants Scenario .. 461
 22.4.2 Supermarket Scenario ... 461
 22.4.3 Street Walk Scenario .. 462
22.5 Experiment Results .. 463
 22.5.1 Results of the Supermarket Scenario Experiments .. 464
 22.5.2 Results of the Street Walk Scenario Experiments ... 465
 22.5.3 Presence Questionnaire Evaluation ... 465
 22.5.4 Discussion .. 466
22.6 Conclusions .. 467
References .. 468

23 Touchless Motion-Based Interaction for Therapy of Autistic Children .. 471
Franca Garzotto, Matteo Valoriani and Laura Bartoli
 23.1 Introduction ... 472
 23.2 Related Work ... 473
 23.3 Empirical Study .. 477
 23.3.1 Research Variables .. 477
 23.3.2 Instruments ... 478
 23.3.3 Participants, Setting and Procedure 483
 23.4 Results .. 485
 23.4.1 Attention Skills .. 485
 23.4.2 Behavioral Aspects .. 486
 23.5 Conclusions .. 491
References .. 492

Part VI Virtual Healing and Restoration

24 Virtual Natural Environments for Restoration and Rehabilitation in Healthcare .. 497
Robert Stone, Charlotte Small, James Knight, Cheng Qian and Vishant Shingari
 24.1 Introduction ... 498
 24.1.1 Distraction Therapy .. 498
 24.1.2 VR and Imaginal Exposure 499
 24.1.3 VR and Combat-Related PTSD 501
 24.1.4 Human Factors Issues of VR for Exposure Therapy .. 502
24.2 Restorative Environments ... 503
24.3 “Surrogate” Natural Environments 505
 24.3.1 Image- and Video-based Restorative Environments . . . 506
 24.3.2 Virtual Reality-Based Restorative Environments . . . 508
24.4 The Virtual Restorative Environment Therapy Project 509
 24.4.1 Early VRE Pilot Studies 511
24.5 Conclusions ... 516
References ... 518

25 Virtual Reality Graded Exposure Therapy as Treatment for Pain-Related Fear and Disability in Chronic Pain 523
 Thomas D. Parsons and Zina Trost
 25.1 Background and Introduction 523
 25.2 The Role of Pain-Related Fear in Disability 524
 25.3 Treating Pain-Related Fear and Avoidance Behavior:
 Graded Exposure In Vivo 525
 25.4 Virtual Reality as an Instrument of Treatment 527
 25.4.1 Virtual Reality Exposure Therapy
 for Specific Phobias 528
 25.4.2 Virtual Reality for Pain Distraction 529
 25.5 Treating Pain-Related Fear and Avoidance Behavior
 in Chronic Pain: Virtual Reality Graded Exposure Therapy 531
 25.5.1 Engagement and Reinforcement 533
 25.5.2 Assessment of Emotional Responses to Exposure 534
 25.5.3 Kinematic Tracking of Movement Performance 536
 25.5.4 Generalizing Treatment Gains 538
 25.6 Conclusions ... 538
References ... 539

26 The Importance and Creation of High-Quality Sounds
in Healthcare Applications ... 547
 Eric Fassbender and Christian Martyn Jones
 26.1 Introduction .. 547
 26.2 The Use of Audio and Video in Healthcare Applications 548
 26.2.1 Effects of Poor Audio in Healthcare Applications 549
 26.3 How to Produce High Quality Audio Recordings 550
 26.3.1 Pre-production 551
 26.3.2 Production ... 556
 26.3.3 Post-production 559
 26.4 Summary ... 564
References ... 564

About the Editors .. 567
Virtual, Augmented Reality and Serious Games for Healthcare
Ma, M.; Jain, L.C.; Anderson, P. (Eds.)
2014, XVIII, 568 p. 207 illus., 40 illus. in color., Hardcover
ISBN: 978-3-642-54815-4