Chapter 2
Lumped Parameter Modelling with Ordinary Differential Equations

2.1 Overview of Ordinary Differential Equations

An ordinary differential equation (ODE) is used to express a relationship between a function of one independent variable (typically time) and its derivatives. If no derivatives are present, the relationship is characterised by an algebraic equation (AE). ODEs are often used in lumped parameter modelling to approximate the behaviour a physical system by separating it into discrete parts, each characterised by one or more dependent variables. An example of a simple ODE is:

\[
\frac{dN}{dt} = \frac{rN(K-N)}{K}, \quad N(0) = N_0
\] (2.1)

where \(N \) represents the population of, say, bacteria in a Petri-dish, \(r \) is the growth rate when \(N = 0 \), and \(K \) is the maximum population capacity of the system. For this simple example, it is possible to obtain an exact closed-form solution for \(N \) as a function of \(t \) using the method of separation of variables, in which the variables are grouped on each side of the equality. Thus, we can rewrite Eq. 2.1 in the form:

\[
\frac{dN}{rN(K-N)} = \frac{dt}{K}
\]

Integrating both sides, we obtain

\[
\int \frac{dN}{rN(K-N)} = \int \frac{dt}{K} = \frac{t}{K} + C_0
\] (2.2)

where \(C_0 \) is a constant of integration. To integrate the left-hand side, we rewrite the integrand using the partial fraction expansion:

\[
\frac{1}{rN(K-N)} = \frac{A_1}{rN} + \frac{A_2}{K-N}
\] (2.3)
where A_1, A_2 are constants to be determined. Multiplying both sides of Eq. 2.3 by rN, then setting $N = 0$, yields $A_1 = 1/K$. Similarly, multiplying both sides of Eq. 2.3 by $K - N$, then setting $N = K$, yields $A_2 = 1/rK$. Hence, the left-hand side of Eq. 2.2 can be written as:

$$\int \frac{dN}{rN(K - N)} = \frac{1}{K} \int \frac{1}{rN} \int \frac{dN}{rK - N}$$

$$= \frac{\ln N}{rK} - \frac{\ln(K - N)}{rK}$$

$$= \frac{1}{rK} \ln \left[\frac{N}{K - N} \right]$$

Substituting this into the left-hand side of Eq. 2.2 and multiplying both sides by rK yields:

$$\ln \left[\frac{N}{K - N} \right] = rt + C_0 rK$$

and since $N = N_0$ when $t = 0$, we have $C_0 = \frac{1}{rK} \ln \left[\frac{N_0}{K - N_0} \right]$. Thus,

$$\ln \left[\frac{N}{K - N} \right] = rt + \ln \left[\frac{N_0}{K - N_0} \right]$$

and taking the exponential of both sides:

$$\frac{N}{K - N} = \left[\frac{N_0}{K - N_0} \right] e^{rt}$$

Finally, after a little algebraic manipulation, we obtain the closed-form solution for N as:

$$N = \frac{K e^{rt}}{\left[\frac{K}{N_0} + e^{rt} \right]}$$

which is known as the logistic equation. In general, however, when modelling with ODEs we must numerically-integrate to obtain an approximate solution.

When more than one ODE is involved, the set of equations is known as a system of ordinary differential equations. If the multiple set of equations includes a combination of ODEs and AEs, it is termed a differential-algebraic equation (DAE) system. If any of the differential equations involves multiple independent variables (such as time and space), then it is referred to a partial differential equation (or PDE). PDEs are discussed further in the next chapter.

Example 2.1 Consider a mass m connected to a spring, moving in the presence of a damping resistance, as shown in Fig. 2.1. Derive an ODE governing the motion of the mass.
Fig. 2.1 Damped oscillator. Mass m is connected to a linear spring k in the presence of a damping medium γ. The other end of the spring is connected to a fixed support. The force exerted by the spring on the mass is $-kx$, where x is the displacement of the mass. The damping force exerted by the medium is equal to $-\gamma v$, where v is the velocity of the mass.

Answer: The motion of the mass can be determined from the following relations:

- Total force acting on mass $= ma$, where a is the acceleration.
- Damping force $= -\gamma v$, where v is the velocity.
- Elastic force of spring $= -kx$, where x is the displacement of the mass from its resting position.

This yields the following equation for the motion of the mass:

$$ma = -\gamma v - kx$$

$$ma + \gamma v + kx = 0$$

Substituting the relationships $a = \frac{\text{d}^2x}{\text{d}t^2}$ and $v = \frac{\text{d}x}{\text{d}t}$, we obtain the following ODE:

$$m \frac{\text{d}^2x}{\text{d}t^2} + \gamma \frac{\text{d}x}{\text{d}t} + kx = 0$$

This represents a 2nd order ODE, since the highest derivative is of order 2. It can be reduced to a coupled system of 1st order ODEs by introducing the velocity variable v to obtain:

$$\frac{\text{d}x}{\text{d}t} = v$$

$$\frac{\text{d}v}{\text{d}t} = -\frac{k}{m}x - \frac{\gamma}{m}v$$

2.2 Linear ODEs

Ignoring constraints imposed by initial or boundary values, we assume that a given ODE is satisfied by two distinct solutions, $\phi_1(t)$ and $\phi_2(t)$. If the combination of solutions $c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution, where c_1 and c_2 are any arbitrary
constants, then the ODE is linear. Otherwise, it is non-linear. In general, a linear ODE of order N is given by:

$$a_N(t) \frac{d^N x}{dt^N} + a_{N-1}(t) \frac{d^{N-1} x}{dt^{N-1}} + \cdots + a_2(t) \frac{d^2 x}{dt^2} + a_1(t) \frac{dx}{dt} + a_0(t)x = F(t) \quad (2.4)$$

where $F(t)$ is the forcing term and along with the coefficients $a_i(t)(i = 0 \cdots N)$, are all functions only of the independent variable. If $F(t) = 0$, the linear ODE is said to be homogeneous, and its solution is known as the homogeneous solution. If $F(t) \neq 0$, then the ODE is non-homogeneous. If one solution can be found for the ODE (i.e. a particular solution), then the general solution is given by the sum of the particular and homogeneous solutions.

If the coefficients $a_i(i = 0 \cdots N)$ in Eq. 2.4 are constant, then the homogeneous ODE can be solved analytically. Consider the following N^{th} order ODE:

$$\frac{d^N x}{dt^N} + a_{N-1} \frac{d^{N-1} x}{dt^{N-1}} + \cdots + a_2 \frac{d^2 x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = 0 \quad (2.5)$$

where $a_{N-1} \cdots a_0$ are constant. To solve this ODE, substitute $x = e^{mt}$ into Eq. 2.5, where m is constant to be determined, to obtain:

$$a_{N-1} m^{N-1}e^{mt} + \cdots + a_1 me^{mt} + a_0 e^{mt} = 0$$

Dividing throughout by e^{mt}, we obtain the characteristic equation:

$$a_{N-1} m^{N-1} + \cdots + a_1 m + a_0 = 0$$

which has N roots: $m_1, \ldots m_N$. The solution to the ODE is then given by the linear combination:

$$x(t) = C_1 e^{m_1 t} + C_2 e^{m_2 t} + \cdots + C_N e^{m_N t}$$

where the $C_i(i = 1 \cdots N)$ are N integration constants whose values can be determined from the ODE boundary conditions. Two types of boundary conditions for N^{th} order ODEs, both linear and non-linear, are defined:

- **Initial-value problem**, where N initial conditions are specified at the start of the interval. For example:

 $$\frac{d^2 x}{dt^2} + 2 \frac{dx}{dt} + 3x = 0$$
 $$x(0) = 0$$
 $$x'(0) = 1$$

- **Boundary-value problem**, where N conditions are specified at either end of the interval, as in:
Example 2.2 Solve the ODE

\[\frac{d^2x}{dt^2} + 4 \frac{dx}{dt} + 3x = 0 \]
\[x(0) = 1 \]
\[x'(0) = 1 \]

Answer: The characteristic equation is

\[m^2 + 4m + 3 = 0 \]
\[(m + 3)(m + 1) = 0 \]
\[m = -3 \quad \text{or} \quad -1 \]

Hence the solution is of the form

\[x(t) = C_1 e^{-3t} + C_2 e^{-t} \]

To find \(C_1, C_2 \), we use the given initial values \(x(0) = x'(0) = 1 \). Noting that \(x'(t) = -3C_1 e^{-3t} - C_2 e^{-t} \), we obtain

\[C_1 + C_2 = 1 \]
\[-3C_1 - C_2 = 1 \]

which yields \(C_1 = -1, C_2 = 2 \). Hence, the solution to the initial-value problem is

\[x(t) = -e^{-3t} + 2e^{-t} \]

If the characteristic equation contains \(r \) repeated roots

\[\overbrace{m_1, m_1, \ldots, m_1, \ldots, m_N}^{\text{\(r \) times}} \]

then the form of the solution is

\[x(t) = C_1 e^{m_1 t} + C_2 t e^{m_1 t} + \cdots + C_r t^{r-1} e^{m_1 t} + \cdots + C_{N-r+1} e^{m_{N-r} t} \]

\[\text{note extra powers of } t \]
where extra powers of the dependent variable are present for the repeated roots.

Example 2.3 Find the solution to the ODE:

\[
\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0
\]

\[x(0) = 1\]

\[x'(0) = 0\]

Answer: The ODE has a repeated root of -1 in its characteristic equation, and has the solution

\[x(t) = e^{-t} + te^{-t}\]

□

If the characteristic equation contains complex roots, then we make use of *Euler’s formula:*¹

\[e^{i\theta} = \cos \theta + i \sin \theta\]

where \(i = \sqrt{-1}\).

Example 2.4 Solve the ODE

\[
\frac{d^2x}{dt^2} + \omega^2 x = 0
\]

\[x(0) = 1\]

\[x'(0) = 0\]

Answer: The characteristic equation has roots of \(\pm i\omega\), hence

\[x(t) = C_1e^{-i\omega t} + C_2e^{i\omega t}\]

\[x'(t) = -i\omega C_1e^{-i\omega t} + i\omega C_2e^{i\omega t}\]

Substituting the initial values at \(t = 0\) yields

\[C_1 + C_2 = 1\]

\[-i\omega C_1 + i\omega C_2 = 0\]

which can be solved to obtain \(C_1 = C_2 = 0.5\). Hence,

¹Named after Leonhard Euler (1707–1783), influential Swiss mathematician, physicist and engineer who made important discoveries in mathematics, mechanics, fluid mechanics, optics and astronomy.
2.2 Linear ODEs

\[x(t) = 0.5e^{-i\omega t} + 0.5e^{i\omega t} \]
\[= 0.5[\cos(-\omega t) + \sin(-\omega t)] + 0.5[\cos(\omega t) + \sin(\omega t)] \]
\[= 0.5[\cos(\omega t) - \sin(\omega t)] + 0.5[\cos(\omega t) + \sin(\omega t)] \]
\[= \cos(\omega t) \]

\[\square \]

2.3 ODE Systems

A system of ODEs can be expressed in terms of 1st order ODEs expressed in the general form:

\[
\begin{align*}
\frac{dy_1}{dt} &= f_1(t, y_1, y_2, \ldots, y_N) \\
\frac{dy_2}{dt} &= f_2(t, y_1, y_2, \ldots, y_N) \\
& \vdots \\
\frac{dy_N}{dt} &= f_N(t, y_1, y_2, \ldots, y_N)
\end{align*}
\]

\[y_1(0) = y_{1,0}, \quad y_2(0) = y_{2,0}, \ldots, \quad y_N(0) = y_{N,0} \]

where \(f_1, f_2, \ldots, f_N \) represent linear or non-linear functions, and the \(y_{i,0} (i = 1 \cdots N) \) are the initial variable values. The above system can be more compactly written as

\[
\frac{dy}{dt} = f(t, y), \quad y(0) = y_0
\]

(2.6)

where \(y = (y_1, \ldots, y_N)^T \), \(f = (f_1, \ldots, f_N)^T \), and \(y_0 \) is the initial value of \(y \) at \(t = 0 \). Note that for any instant in time, variable \(y \) contains enough information to completely characterise the system. This information is known as the system state, and the \(y \) are known as state-variables.

To solve such ODE systems using Matlab, two .m files are required. One is a function that evaluates \(f(t, y) \) of Eq. 2.6, returning the state-variable derivatives at a given time and state. The other file is a script that calls one of Matlab’s in-built ODE solvers, for which the previous function will be an input argument. Matlab provides the following ODE solvers, all of which use the same syntax:

\[
[Tout,Yout] = odexxx('user_fun', t_span, init);
\]

where \(odexxx \) stands for one of \(ode45 \), \(ode23 \), \(ode113 \), \(ode15s \), \(ode23s \), \(ode23t \), and \(ode23tb \). \(user_fun(t, Y) \) is a user-defined function to compute
the ODE derivatives as a function of the system variable array Y and the current time-value t. Note that when this function is used as an argument to the ODE solvers, its name must be enclosed in single quotes. Also note that its first argument must be the independent variable (in this case, t), irrespective if this variable is present or not in the f function of Eq. 2.6. t_{span} is an array of time-values specifying the output times. Alternately, $t\text{span}$ can also consist of just two values specifying the start and end times of integration, such as $[0 \ 100]$. Finally, the init argument specifies an array of initial values for Y. Note that the solver outputs an array of time values (T_{out}), as well as the calculated state-variables (Y_{out}) corresponding to these times. Each column of Y_{out} corresponds to one state-variable.

It is also possible to include an additional options argument following init to specify non-default settings for the ODE solver. When used, the options argument is initialised using the odeset command. For example, to specify a maximum time step of 0.001 and a relative tolerance of 10^{-4} (i.e. 0.01% accuracy), use:

```matlab
options = odeset('MaxStep', 0.001, 'RelTol', 1e-4);
[Tout,Yout] = odesxx('user_fun', t_span, init, options);
```

Example 2.5 The Van der Pol oscillator, defined by the coupled pair of ODEs

$$
\begin{align*}
\frac{dv}{dt} &= u \\
\frac{du}{dt} &= \mu(1 - v^2)u - v \\
v(0) &= 2, \quad u(0) = 0
\end{align*}
$$

has been used to model many biological oscillators, including the heartbeat [11] as well as neural spiking activity, referred to as action potentials [2]. If parameter $\mu \geq 0$, the system will undergo stable oscillations, known as a limit cycle. Using Matlab, solve the Van der Pol ODE system.

Answer: To solve the Van der Pol Oscillator equations in Matlab, first define a function to output the state-variable derivatives:

```matlab
function dy = vdp(t,y)
    dy = zeros(2,1); % defines dy as a 2x1 column vector
    mu = 1000;
    dy(1) = y(2);
    dy(2) = mu*(1 - y(1)^2)*y(2) - y(1);
end
```

and save to vdp.m. Then implement the following separate script to solve the ODEs from $t = 0$ to 3000:

```matlab
[T,Y] = ode15s('vdp', [0 3000], [2 0]);
plot(T,Y(:,1),'k-'), legend('v');
```
which produces the plot shown in Fig. 2.2.

2.3.1 Example Model 1: Cardiac Mechanics

A lumped parameter mechanics model of the cardiac left ventricle coupled to the systemic circulation [9] is shown in Fig. 2.3. Here, the various elements of the circulation are represented using electric circuit analogues:

- voltage is analogous to pressure
- current is analogous to volumetric flow rate
- resistance equals pressure across an element divided by flow through it (the hydraulic equivalent of Ohm’s law)
- diodes are analogous to valves, allowing only one-way flow
- capacitance is analogous to vessel compliance (C), and equals the volume of fluid (V) stored in the vessel divided by the pressure (P). Writing

$$V = CP$$

and taking derivatives of both sides, we obtain:

$$\frac{dV}{dt} = C \frac{dP}{dt}$$

or

$$Q = C \frac{dP}{dt}$$

where Q is the volumetric flow rate (i.e. fluid volume per unit time). Left-ventricular pressure (P_v) is given by
Fig. 2.3 Time-varying elastance model of left ventricle. P_v is the left ventricular pressure, which is a function of left ventricular volume (V_v) and time. P_r represents a fixed filling pressure from a venous reservoir, R_{in} is the input filling resistance, R_o is the resistance of the aorta, P_s is the lumped systemic circulation pressure and R_s, C_s represent the systemic resistance and compliance respectively.

\[P_v = a(V_v - b)^2 + (cV_v - d) f(t) \]

where a, b, c, d are parameters, and $f(t)$ describes a time-varying elastance given by:

\[
f(t) = \begin{cases}
\sin^2\left(\frac{\pi t}{2t_p}\right) & 0 \leq t < t_p \\
\cos^2\left(\frac{\pi(t-t_p)}{2(t_s-t_p)}\right) & t_p \leq t < t_s \\
0 & t_s \leq t < T
\end{cases}
\]

and $f(t + T) = f(t)$

where T is the heart period and t_p, t_s refer respectively to peak contraction time and total contraction time (systole). All model parameters are given in Table 2.1.

The state-variables for this model are the systemic pressure P_s and the ventricular volume V_v. From the circuit diagram of Fig. 2.3, we can readily write expressions for the flow Q_{in} entering the ventricle from P_r, as well as the flow Q_{out} exiting through R_o as follows:

\[
Q_{in} = \begin{cases}
\frac{P_r - P_v}{R_{in}} & P_r > P_v \\
0 & P_r \leq P_v \quad \text{(due to input valve)}
\end{cases}
\]

\[
Q_{out} = \begin{cases}
\frac{P_v - P_s}{R_o} & P_v > P_s \\
0 & P_v \leq P_s \quad \text{(due to output valve)}
\end{cases}
\]

and since Q_{out} flows through the parallel systemic compliance and resistive branches, we can write:

\[Q_{out} = C_s \frac{dP_s}{dt} + \frac{P_s}{R_s} \]

Hence, the ODEs for this model are:
Table 2.1 Parameter values of ventricular elastance model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_o</td>
<td>0.06 mmHg s cm$^{-3}$</td>
<td>a</td>
<td>0.0007 mmHg cm$^{-6}$</td>
</tr>
<tr>
<td>C_s</td>
<td>2.75 cm3 mmHg$^{-1}$</td>
<td>b</td>
<td>8 cm3</td>
</tr>
<tr>
<td>R_s</td>
<td>1 mmHg s$^{-3}$</td>
<td>c</td>
<td>1.5 mmHg cm$^{-3}$</td>
</tr>
<tr>
<td>R_{in}</td>
<td>0.001 mmHg s cm$^{-3}$</td>
<td>d</td>
<td>0.9 mmHg</td>
</tr>
<tr>
<td>P_f</td>
<td>10 mmHg</td>
<td>t_p</td>
<td>0.35 s</td>
</tr>
<tr>
<td>T</td>
<td>1 s</td>
<td>t_s</td>
<td>0.8 s</td>
</tr>
</tbody>
</table>

\[
\frac{dP_s}{dt} = \frac{Q_{out}}{C_s} - \frac{P_s}{R_s C_s} \\
\frac{dV_v}{dt} = Q_{in} - Q_{out}
\]

where P_v, Q_{in} and Q_{out} are defined above. Our task is to implement this model in Matlab, and in particular, obtain the steady-state pressure-volume loop for the left ventricle.

The first step is to code the user-defined function to return the derivatives of the state-variables for any given state and time. This is shown below for the function file heart_prime.m:

```matlab
function Y_prime = heart_prime(t,Y)  
global Ro Cs Rs R_in Pr T a b c d tp ts;

Y_prime = zeros(2,1); % to ensure a column vector
% extract states
Ps = Y(1);
Vv = Y(2);

% determine elastance
tt = mod(t,T);
if (tt < tp)
    f = sin(pi*tt/(2*tp))^2;
elseif (tt < ts)
    f = cos(pi*(tt-tp)/(2*(ts-tp)))^2;
else
    f = 0;
end;

% determine Pv
Pv = a*(Vv-b)^2+(c*Vv-d)*f;
```

```matlab
function Y_prime = heart_prime(t,Y)  
global Ro Cs Rs R_in Pr T a b c d tp ts;

Y_prime = zeros(2,1); % to ensure a column vector
% extract states
Ps = Y(1);
Vv = Y(2);

% determine elastance
tt = mod(t,T);
if (tt < tp)
    f = sin(pi*tt/(2*tp))^2;
elseif (tt < ts)
    f = cos(pi*(tt-tp)/(2*(ts-tp)))^2;
else
    f = 0;
end;

% determine Pv
Pv = a*(Vv-b)^2+(c*Vv-d)*f;
```
% determine flows
if (Pr > Pv)
 Q_in = (Pr-Pv)/R_in;
else
 Q_in = 0;
end;
if (Pv > Ps)
 Q_out = (Pv-Ps)/Ro;
else
 Q_out = 0;
end;

% evaluate derivatives
Y_prime(1) = Q_out/Cs - Ps/(Rs*Cs);
Y_prime(2) = Q_in - Q_out;

Note the use of the global keyword to declare model parameters as global variables. This allows Matlab to assign and access their values outside of the current function. Also, note the use of the \texttt{mod} (modulus) function to implement a periodic elastance. \texttt{mod(t,T)} returns the remainder on division of \texttt{t} by \texttt{T}.

Once the user-defined function has been coded, the following script can be used to solve the model, and extract and plot the steady-state ventricular pressure loop:

```matlab
global Ro Cs Rs R_in Pr T a b c d tp ts;

% assign parameters
a = 0.0007; % mmHg/cm^6
b = 8; % cm^3
C = 1.5; % mmHg/cm^3
d = 0.9; % mmHg
tp = 0.35; % s
ts = 0.8; % s
Ro = 0.06; % mmHg.s/cm^3
Rs = 2.75; % cm^3/mmHg
R_in = 0.9; % mmHg.s/cm^3
Pr = 10; % mmHg
T = 1; % s

% solve ODEs
[Tout, Yout] = ode15s('heart_prime', [0 10*T], [50 50]);

% extract Pv, Vv
```
\begin{verbatim}
f = zeros(size(Tout));
tt = mod(Tout,T);
for ii = 1:length(f)
 if (tt(ii) < tp)
 f(ii) = sin(pi*tt(ii)/(2*tp))^2;
 elseif (tt(ii) < ts)
 f(ii) = cos(pi*(tt(ii)-tp)/(2*(ts-tp)))/2;
 else
 f(ii) = 0;
 end;
end;
Vv = Yout(:,2);
Pv = a*(Vv-b).^2+(c*Vv-d).*f;

% plot the final heart period PV loop (steady state)
index = find(Tout>=9*T);
A = index(1)-1;

plot(Vv(A:end),Pv(A:end),'k-'), xlabel('Volume (cm^3)'), ylabel('Pressure (mmHg)'), title('Steady-State PV Loop');
\end{verbatim}

which produces the steady-state pressure-volume loop plot shown in Fig. 2.4. Note that to produce this plot, it is necessary to re-extract the ventricular pressure P_v, which is calculated inside the function \texttt{heart_prime}. Once the Matlab ODE solver has completed its execution, only the state-variables at the output time values are returned. To extract any other ancillary quantities, these must be re-evaluated.

\textbf{Fig. 2.4} Steady-state pressure-volume loop for time-varying elastance left ventricular model.
For this model, the state variables are P_s and V_v: knowing the associated time value t allows any other model quantity (in this case P_v) to be determined. Also note that the steady-state pressure-volume loop represents a stable limit cycle of the ODE system, independent of the initial values chosen for P_s and V_v (in the above code these initial values were 50 mmHg and 50 cm3 respectively).

2.3.2 Example Model 2: Hodgkin–Huxley Model of Neural Excitation

Sir Alan Hodgkin (1914–1998) and Sir Andrew Huxley (1917–2012) shared the 1963 Noble Prize in Physiology or Medicine (jointly with Sir John Eccles) “for their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane”. Their work culminated in the publication of a mathematical model of the neural electrical impulse known as the action potential, based on their electrophysiological experiments in the giant axon of the squid [5]. This model significantly advanced our understanding of active ionic mechanisms in excitable tissues, and most computational models of nerves, muscle and heart electrical activity are based on the formalism Hodgkin and Huxley pioneered several decades ago.

The space-clamped electric analogue of the Hodgkin–Huxley model is shown Fig. 2.5. In this version, the neuron is represented as a single compartment, ignoring any spatial propagation in electrical activity. The neural membrane is described by a capacitance C_m in parallel with three conductance branches representing transmembrane ionic currents. Denoting the transmembrane potential as V, and noting that current flowing through C_m returns through the conductance branches, we can write:

$$C_m \frac{dV}{dt} = -(i_{Na} + i_K + i_L)$$

where i_{Na}, i_K and i_L denote Na$^+$, K$^+$, and non-specific leakage currents through the conductance pathways. These currents in turn are given by

$$i_{Na} = g_{Na} (V - V_{Na})$$
$$i_K = g_K (V - V_K)$$
$$i_L = g_L (V - V_L)$$

where V_{Na}, V_K and V_L correspond to the reversal potential for each of the i_{Na}, i_K and i_L membrane currents respectively. These potentials correspond to the membrane voltage which exactly balances ionic diffusion in each channel with ion flow due to the electric field. The membrane conductances g_{Na} and g_K follow voltage-dependent
Fig. 2.5 Hodgkin–Huxley equivalent-circuit model of neural electrical activity. The neural cell membrane is represented as a capacitance C_m in parallel with conductance pathways representing transmembrane channels for Na^+ ions (g_{Na}), K^+ ions (g_K) and a non-specific leakage (g_L). Each conductance is in series with a voltage source, representing the reversal potential for that channel. g_{Na} and g_K are variable, obeying voltage-dependent kinetics. V_{inside} and V_{outside} denote the voltages inside and outside the neuron, with their difference equal to the transmembrane potential V.

kinetics, so that the complete ODE system is given by:

$$
\frac{dV}{dt} = -\frac{1}{C_m} \left[\bar{g}_{Na} m^3 h (V - V_{Na}) + \bar{g}_K n^4 (V - V_K) + \bar{g}_L (V - V_L) - i_{\text{stim}} \right]
$$

$$
\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n
$$

$$
\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m
$$

$$
\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h
$$

where \bar{g}_{Na}, \bar{g}_K, \bar{g}_L are the maximum membrane conductances of each channel, n, m, h are ‘gating’ variables governed by first-order kinetics, and i_{stim} is an applied intracellular stimulus current. Using a square-wave profile, this stimulus current is given by

$$
i_{\text{stim}} = \begin{cases}
I_s & t_{\text{on}} \leq t < t_{\text{on}} + t_{\text{dur}} \\
0 & \text{otherwise}
\end{cases}
$$

where I_s, t_{on} and t_{dur} represent the stimulus current amplitude, onset time and duration respectively. The n, m, h gating variables lie between 0 and 1 and have voltage-dependent forward (α) and reverse (β) rates (in s$^{-1}$) according to:
\begin{align*}
\alpha_n &= \frac{10(V+50)}{1-\exp\left[-\frac{(V+50)}{10}\right]} \quad \beta_n = 125 \exp\left[-\frac{(V+60)}{80}\right] \\
\alpha_m &= \frac{100(V+35)}{1-\exp\left[-\frac{(V+35)}{10}\right]} \quad \beta_m = 4000 \exp\left[-\frac{(V+60)}{18}\right] \\
\alpha_h &= 70 \exp\left[-\frac{(V+60)}{20}\right] \quad \beta_h = \frac{1000}{1+\exp\left[-\frac{(V+30)}{10}\right]}
\end{align*}

where V in units of mV. All model parameter values are given in Table 2.2.3.

To solve this model in Matlab, a user-defined derivative function, \texttt{HH_prime.m} can be written as follows:

```matlab
function y_out = HH_prime(t,y)
% returns state-variable derivatives for HH neuron model

% initialise parameters and state-variables
y_out = zeros(4,1);
Cm = 1;
g_Na = 120000;
g_K = 36000;
g_L = 300;
V_Na = 55;
V_K = -72;
V_L = -49.387;
I_s = 60000;
t_on = 0.001;
t_dur = 0.001;
V = y(1);
n = y(2);
m = y(3);
h = y(4);

% calculate rates
alpha_n = 10*(V+50)/(1-exp(-(V+50)/10));
beta_n = 125*exp(-(V+60)/80);
alpha_m = 100*(V+35)/(1-exp(-(V+35)/10));
beta_m = 4000*exp(-(V+60)/18);
alpha_h = 70*exp(-(V+60)/20);
beta_h = 1000/(1+exp(-(V+30)/10));
```

These parameters were modified from the original Hodgkin–Huxley formulation to yield a resting potential of -60 mV and outward currents positive in accordance with modern electrophysiological convention.
% determine membrane and stimulus currents
i_Na = g_Na*m^3*h*(V-V_Na);
i_K = g_K*n^4*(V-V_K);
i_L = g_L*(V-V_L);
if (t >= t_on)&&(t<t_on+t_dur)
i_stim = I_s;
else
i_stim = 0;
end;

% calculate derivatives
y_out(1) = -(i_Na+i_K+i_L-i_stim)/Cm;
y_out(2) = alpha_n*(1-n)-beta_n*n;
y_out(3) = alpha_m*(1-m)-beta_m*m;
y_out(4) = alpha_h*(1-h)-beta_h*h;

This function is then called upon in the following script, which produces the mem-
brane potential plot shown in Fig. 2.6:

Y_init = [-60, 0.3177, 0.0529, 0.5961];
[time,Y] = ode15s('HH_prime', [0 0.02], Y_init);
plot(time,Y(:,1),'k-'), xlabel('time(s)'), ylabel('V (mV)');

Fig. 2.6 Hodgkin–Huxley neuron model response to a brief stimulus. Shown is the membrane
potential V against time
Table 2.2 Parameter values used for Hodgkin–Huxley neuron model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_m</td>
<td>1μF cm$^{-2}$</td>
<td>V_K</td>
<td>−72 mV</td>
</tr>
<tr>
<td>\bar{g}_{Na}</td>
<td>$120,000$ µS cm$^{-2}$</td>
<td>V_L</td>
<td>−49.387 mV</td>
</tr>
<tr>
<td>\bar{g}_K</td>
<td>$36,000$ µS cm$^{-2}$</td>
<td>I_s</td>
<td>$60,000$ µA cm$^{-2}$</td>
</tr>
<tr>
<td>g_L</td>
<td>300 µS cm$^{-2}$</td>
<td>t_{on}</td>
<td>1 ms</td>
</tr>
<tr>
<td>V_{Na}</td>
<td>55 mV</td>
<td>t_{dur}</td>
<td>1 ms</td>
</tr>
</tbody>
</table>

2.4 Further Reading

Further interesting examples of ODE models in physiological systems and bioengineering can be found in the texts of King and Mody [7], Ottesen et al. [9] and Izhikevitch [6]. A good general text on ODE systems is that of Rabenstein [10].

Problems

2.1 In the Hodgkin–Huxley formulation of neural activation, three gating variables n, m, h are employed, satisfying the ODE:

$$\frac{dx}{dt} = \alpha_x(V)(1 - x) - \beta_x(V)x$$

where $x = n, m, h$ and $\alpha_x(V)$ and $\beta_x(V)$ are known functions of membrane voltage V. Assuming a voltage-clamp experiment is performed, whereby the membrane voltage is stepped suddenly from a value V_{hold} to a new value V_{clamp} and held at this value via a feedback mechanism. α_x and β_x are now constant.

(a) Solve this equation analytically for x, with initial value $x(0) = x_0$, stating the homogeneous, particular and general solutions.

(b) What is the steady-state value of x? Hence, what is a reasonable estimate for x_0?

2.2 The passive mechanical behaviour of skeletal muscle can be modelled using a simplified lumped parameter representation consisting of a linear spring k_1 in series with a parallel linear spring-dashpot combination k_2, b, as shown below:
One end of the muscle is fixed, and the displacement of the other end is \(x \). If \(x_1 \) denotes the change in length from rest in spring \(k_1 \), then the forces in each element are given by:

\[
F_1 = k_1 x_1 \quad F_2 = k_2 x_2 \quad F_b = b \frac{dx_2}{dt}
\]

where \(F_1, F_2 \) and \(F_b \) refer to elements \(k_1, k_2 \) and \(b \) respectively, and \(x_2 = x - x_1 \).

(a) If the length \(x \) of the muscle is suddenly stepped and held from 0 to \(X_m \) at \(t = 0 \), solve the system analytically for the applied force, \(F \).

(b) If the applied force on the muscle \(F \) is suddenly stepped and held from 0 to \(F_m \) at \(t = 0 \), find the analytical solution for the change in length, \(x \).

2.3 A simple model of neuronal excitation represents the cell membrane as a resistance \(R \) in parallel with a capacitance \(C \). An applied stimulus current \(I \) depolarises the membrane to a potential of \(V \), as shown below. If \(V \) exceeds a pre-defined threshold \(V_{th} \), the neuron will fire.

![Neuronal model](image)

The currents \(i_R \) and \(i_C \) flowing through the \(R \) and \(C \) branches are given by

\[
i_R = \frac{V}{R} \quad i_C = C \frac{dV}{dt}
\]

(a) Assuming the neuron is initially at rest with \(V = 0 \), and a constant stimulus current \(I \) is applied at \(t = 0 \), find the time taken \(T \) to depolarize the membrane to \(V_{th} \). Determine the corresponding stimulus strength-duration characteristic for neuronal activation, i.e. \(I \) as a function of \(T \).

(b) Defining the \textit{rheobase} as the minimum current necessary to activate the neuron, and the \textit{chronaxie} as the required stimulus duration for an applied current of twice the rheobase, determine both quantities from the above strength-duration characteristic.

2.4 Consider the system below of two coupled masses \(M \), connected to each other and to fixed supports via three linear springs with spring constants \(k \):

![Coupled masses](image)
(a) Determine the pair of ODEs describing the motion of this system.
(b) Solve this system analytically for the displacements x_1 and x_2, assuming the masses are initially at rest and displaced by amounts u_1 and u_2.

Hint: Use the variable substitutions $y_1 = x_1 + x_2$, $y_2 = x_1 - x_2$.

2.5
A simplified two-compartment model of glucose-insulin kinetics in a human subject proposed by Berman et al. [1] is shown below. $I_p(t)$ represents insulin injected intravenously into the blood, I is the concentration of insulin in a remote body compartment, and G is the glucose concentration in the blood plasma.

$\begin{align*}
\text{Blood Plasma} & \quad I_p(t) \quad k_2 \quad k_3 \\
\text{Liver} & \quad B_0 \quad G \quad k_1 + k_4 I \\
& \quad k_5 + k_6 I \\
\text{Kidneys} & \quad \text{Peripheral Tissues}
\end{align*}$

I_p, I and G are all in units of mM, with model parameters given below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>0.015 min$^{-1}$</td>
<td>k_5</td>
<td>0.035 min$^{-1}$</td>
</tr>
<tr>
<td>k_2</td>
<td>1 min$^{-1}$</td>
<td>k_6</td>
<td>0.02 mM$^{-1}$ min$^{-1}$</td>
</tr>
<tr>
<td>k_3</td>
<td>0.09 min$^{-1}$</td>
<td>B_0</td>
<td>0.5 mM min$^{-1}$</td>
</tr>
<tr>
<td>k_4</td>
<td>0.01 mM$^{-1}$ min$^{-1}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An intravenous dose of insulin is administered as a square-pulse waveform according to:

$$ I_p(t) = \begin{cases}
200 \text{ mM} & 0 \leq t < 0.1 \text{ min} \\
0 & t \geq 0.1 \text{ min}
\end{cases} $$

The initial values of I and G at $t = 0$ are 0 and 10 mM respectively.

Solve for I and G using Matlab over the time interval $0 \leq t \leq 60$ min.

2.6
A simplified lumped parameter electric-analogue model of the heart and systemic circulation is shown below:

4Model VI in their paper.

5This is an example of a four-element windkessel model, translated from German as “air-chamber”. Early German fire engines incorporated an air-filled elastic reservoir between the water pump and outflow hose to dampen any intermittent interruptions to hand-pump water supply. Such damping can be modelled by an electric circuit comprised of resistive, capacitive and inductive elements.
where P_s is the systemic pressure and L_o represents the blood inertance within the aortic root such that the pressure drop across this element is given $L_o \frac{dQ_L}{dt}$, where Q_L is the flow (in cm3 s$^{-1}$) through it. $P_v(t)$ represents the developed ventricular pressure as a function of time, given by the following simplified periodic square-wave profile:

$$P_v(t + T) = P_v(t)$$

$$P_v(t) = \begin{cases} P & 0 \leq t < t_c \\ 0 & t_c \leq t \leq T \end{cases}$$

All other elements are similar to those given earlier in the example of Sect. 2.3.1. Remaining model parameters and descriptions are given below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_o</td>
<td>Aortic root resistance</td>
<td>0.06 mmHg s cm$^{-3}$</td>
</tr>
<tr>
<td>L_o</td>
<td>Aortic root blood inertance</td>
<td>0.2 mmHg s2 cm$^{-3}$</td>
</tr>
<tr>
<td>C_s</td>
<td>Systemic compliance</td>
<td>1 cm3 mmHg$^{-1}$</td>
</tr>
<tr>
<td>R_s</td>
<td>Systemic resistance</td>
<td>1.4 mmHg s$^{-3}$</td>
</tr>
<tr>
<td>P</td>
<td>Peak ventricular pressure</td>
<td>120 mmHg</td>
</tr>
<tr>
<td>T</td>
<td>Heart period</td>
<td>1 s</td>
</tr>
<tr>
<td>t_c</td>
<td>Active contraction interval (systole)</td>
<td>0.35 s</td>
</tr>
</tbody>
</table>

(a) Determine the ODEs describing this system.
(b) Using an appropriate choice of initial values, solve this system using Matlab for the steady-state oscillations in systemic pressure P_s.

2.7 The following set of ODEs modified from McSharry et al. [8] reproduce a synthetic electrocardiogram (ECG) waveform in variable z:

$$\frac{dx}{dt} = \alpha x - \omega y$$
$$\frac{dy}{dt} = \alpha y + \omega x$$
$$\frac{dz}{dt} = -\sum_{i=1}^{5} a_i (\theta - \theta_i) \exp \left(-\frac{(\theta - \theta_i)^2}{2b_i^2} \right) - (z - z_0)$$
where \(\alpha = 1 - \sqrt{x^2 + y^2} \), \(\omega = 2\pi \text{ rad s}^{-1} \), \(\varepsilon_0 = 0 \) and \(\theta = \text{atan2}(y, x) \), where \text{atan2} represents the four-quadrant inverse tangent implemented by the Matlab function \text{atan2}. Remaining model parameters are given below:

<table>
<thead>
<tr>
<th>Index (i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_i) (rad)</td>
<td>(-\frac{1}{2}\pi)</td>
<td>(-\frac{1}{12}\pi)</td>
<td>0</td>
<td>(\frac{1}{2}\pi)</td>
<td>(\frac{1}{2}\pi)</td>
</tr>
<tr>
<td>(a_i) (mV s(^{-1}) rad(^{-1}))</td>
<td>1.2</td>
<td>-5</td>
<td>30</td>
<td>-7.5</td>
<td>0.75</td>
</tr>
<tr>
<td>(b_i) (rad)</td>
<td>0.25</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Given the initial values, \(x(0) = -1 \), \(y(0) = 0 \), \(z(0) = 0 \), numerically solve this ECG model in Matlab from \(t = 0 \) to 1 s, plotting \(z \) against \(t \), where \(z, t \) are in units of mV and s respectively.

2.8 The Frankenhaeuser-Huxley neural action potential model \[3\] consists of the following ODE system:

\[
\begin{align*}
\frac{dV}{dt} &= -\frac{1}{C_m} \left[i_{Na} + i_K + i_P + i_L - i_{stim} \right], \\
\frac{dm}{dt} &= \alpha_m (1 - m) - \beta_m m, \\
\frac{dh}{dt} &= \alpha_h (1 - h) - \beta_h h, \\
\frac{dn}{dt} &= \alpha_n (1 - n) - \beta_n n, \\
\frac{dp}{dt} &= \alpha_p (1 - p) - \beta_p p,
\end{align*}
\]

with membrane ionic currents given by

\[
\begin{align*}
i_{Na} &= m^2 h \bar{P}_{Na} \left(\frac{EF^2}{RT} \right) \frac{[Na]_o - [Na]_i \exp\left(\frac{EF}{RT} \right)}{1 - \exp\left(\frac{EF}{RT} \right)}, \\
i_K &= n^2 \bar{P}_K \left(\frac{EF^2}{RT} \right) \frac{[K]_o - [K]_i \exp\left(\frac{EF}{RT} \right)}{1 - \exp\left(\frac{EF}{RT} \right)}, \\
i_P &= p^2 \bar{P}_P \left(\frac{EF^2}{RT} \right) \frac{[Na]_o - [Na]_i \exp\left(\frac{EF}{RT} \right)}{1 - \exp\left(\frac{EF}{RT} \right)}, \\
i_L &= g_L (V - V_L)
\end{align*}
\]

where \(E \) is the transmembrane potential, \(V \) is the membrane potential displacement from its resting value \(E_r \) (\(V = E - E_r \)), \(F \) is Faraday’s constant, \(R \) is the gas constant, and \(T \) is the absolute temperature. \([Na]_o, [Na]_i, [K]_o \) and \([K]_i \) represent outside (extracellular) and intracellular Na\(^+\) and K\(^+\) concentrations, whilst \(i_{Na}, i_K, i_P, i_L \).
i_p and i_L represent the membrane Na^+, K^+, non-specific (mainly Na^+), and leakage currents respectively. The membrane permeabilities of i_{Na}, i_K and i_p are \bar{P}_{Na}, \bar{P}_{K} and \bar{P}_{p} respectively, with the kinetics of these currents determined from the m, h, n and p gating variables. i_{stim} is an applied intracellular stimulus current given by

\[i_{stim} = \begin{cases} I_s \text{ } & t_{on} \leq t < t_{on} + t_{dur} \\ 0 & \text{otherwise} \end{cases} \]

where \(I_s, t_{on} \) and \(t_{dur} \) represent the stimulus current amplitude, onset time and duration respectively. The voltage-dependent forward (\(\alpha \)) and reverse (\(\beta \)) rates (in ms\(^{-1}\)) are given by:

\[
\alpha_m = \frac{0.36(V-22)}{1 - \exp\left(\frac{22-V}{1}\right)}
\]

\[
\beta_m = \frac{0.4(13 - V)}{1 - \exp\left(\frac{(V-13)}{20}\right)}
\]

\[
\alpha_h = \frac{0.1(-10-V)}{1 - \exp\left(\frac{V+10}{6}\right)}
\]

\[
\beta_h = \frac{4.5}{1 + \exp\left(\frac{(45-V)}{10}\right)}
\]

\[
\alpha_n = \frac{0.02(V-35)}{1 - \exp\left(\frac{35-V}{10}\right)}
\]

\[
\beta_n = \frac{0.05(10 - V)}{1 - \exp\left(\frac{(V-10)}{10}\right)}
\]

\[
\alpha_p = \frac{0.006(V-40)}{1 - \exp\left(\frac{40-V}{10}\right)}
\]

\[
\beta_p = \frac{0.09(-25 - V)}{1 - \exp\left(\frac{(V+25)}{20}\right)}
\]

where \(V \) is in units of mV. Initial values are \(V = 0 \text{ mV}, m = 0.0005, h = 0.8249, n = 0.0268 \) and \(p = 0.0049 \).

The drug tetrodotoxin (TTX) is known to selectively block the membrane i_{Na} current. Assuming that at one given dosage, TTX reduces parameter \(\bar{P}_{Na} \) to 20% of its original value. Solve this model using Matlab over the time interval \(t = 0 \) to 5 ms, plotting the transmembrane potentials \(E \) (in mV) on the same graph for the following two cases:

(1) control (i.e. no TTX) and
(2) TTX applied.

All model parameters are given in the following table:

2.9 A simple three-element model of active cardiac muscle contraction consists of a passive non-linear spring in parallel with a contractile and passive series element, as shown in the diagram. The model structure and equations have been modified from Fung [4].
The total tension T in the muscle is given by the sum of tensions in the parallel and series elements:

$$T = T_p + T_s$$

where T_p and T_s, the tensions in the parallel and series elements respectively, are given by:

$$T_p = \beta \left(e^{\alpha(L-L_0)} - 1 \right), \quad T_s = \beta \left(e^{\alpha L_i} - 1 \right)$$

where α, β are parameters and L_0 denotes the resting length of the muscle. For the contractile element, the velocity of its shortening is described by:

$$\frac{dL_c}{dt} = \frac{a [T_s - S_0 f(t)]}{T_s + \gamma S_0}$$

where a, γ, S_0 are muscle parameters and $f(t)$ is the muscle activation function given by

$$f(t) = \begin{cases}
\sin \left(\frac{\pi}{2} \left[\frac{t-t_0}{t_{tip}+t_0} \right] \right) & 0 \leq t < 2t_{tip} + t_0 \\
0 & t \geq 2t_{tip} + t_0
\end{cases}$$

with t_0 and t_{tip} constants defining activation phase offset and the time to peak isometric contraction respectively.
Model parameters for a cardiac papillary muscle specimen are given in the table below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_0</td>
<td>10 mm</td>
<td>S_0</td>
<td>4 mN</td>
</tr>
<tr>
<td>α</td>
<td>15 mm</td>
<td>γ</td>
<td>0.45</td>
</tr>
<tr>
<td>β</td>
<td>5 mN</td>
<td>t_0</td>
<td>0.05 s</td>
</tr>
<tr>
<td>a</td>
<td>0.66 mm$^{-1}$</td>
<td>t_{ip}</td>
<td>0.2 s</td>
</tr>
</tbody>
</table>

Note that in the relaxed state, the length of the series element L_s is 0.

(a) Using Matlab, solve for and plot the total tension T against time during an isometric contraction in which the muscle is clamped at its resting length L_0.

(b) Solve for and plot muscle length L against time during an isotonic contraction in which the muscle is allowed to freely contract with no imposed load (i.e. $T = 0$).

References

11. van der Pol B, van der Mark J (1928) The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Philos Mag Ser 7(6):763–775
Modelling Organs, Tissues, Cells and Devices
Using MATLAB and COMSOL Multiphysics
Dokos, S.
2017, XIII, 502 p. 207 illus., Hardcover
ISBN: 978-3-642-54800-0