Contents

1 Introduction .. 1
 1.1 First and Second Principles of Thermodynamics 1
 1.1.1 Ideal (Perfect) Gas Laws 2
 1.1.2 Ideal Gas State Equation 4
 1.1.3 Mixtures ... 4
 1.1.4 Specific Heat 5
 1.1.5 First Principle of Thermodynamics (Robert Mayer 1842) 6
 1.1.6 Second Principle of Thermodynamics (Sadi Carnot 1824) 12
 1.2.1 Heat Exergy 24
 1.2.2 Exergy of Closed Systems 27
 1.2.3 Exergy of Open Systems. Relationship Between Exergy Dissipation and Entropy Creation 29
 1.2.4 Non-equilibrium Linear Phenomenological Connection Between Generalized Forces and Currents 33
 1.3 Equilibrium of Thermodynamic Systems and Phase Transformations ... 34
 1.3.1 Thermodynamic Stability and Equilibrium 35
 1.3.2 Equilibrium Conditions of a Homogeneous Isolated System. TPT Equilibrium Point and Static Equilibrium 38
 1.3.3 Phase Equilibrium Conditions of Monocomponent and Binary Systems. TPT Ideal Point and Dynamic Equilibrium. ... 40
 1.3.4 Phase Transformations. Gibbs Rule of Phases 43
 1.3.5 Clapeyron–Clausius Equation 45
 1.4 Absorption Heat Pumping Selected Topic 46
 1.4.1 Absorption Cycle Introduction 46
 1.4.2 Basic Absorption Cycles 49
 1.4.3 Ideal Cycles ... 49
 1.4.4 Selected Topic of Solutions Thermodynamics 53
 1.4.5 Condensation and Evaporation of Binary Mixtures 54
1.4.6 Dissolution (Mixing) Heat of Binary Mixtures 57
1.4.7 Absorption Cycle Charts 63
1.4.8 Working Fluid-Absorbent Mixtures Model 69
References .. 80

2 Mass and Heat Exchange Analysis of the Absorption Processes:
The Divided Device Method ... 83
2.1 Heat Exchange Analysis of Isobar Absorption Processes
with Gliding Temperature ... 83
2.2 The Divided Device Method for Isobar Absorption Processes
Heat Exchange Assessment .. 88
References .. 92

3 Coabsorbent Cycles .. 93
3.1 Introduction .. 93
3.2 Nontruncated Heating and Cooling Coabsorbent Cycles 93
 3.2.1 Nontruncated Cooling Coabsorbent Cycle 94
 3.2.2 Nontruncated Heating (Heat Transformer) Coabsorbent
 Cycle .. 127
 3.2.3 Cycle Change of Place 130
 3.2.4 Nontruncated Coabsorbent-Condensing Cycle 131
 3.2.5 Non-isobar Nontruncated Coabsorbent Cycles 134
References .. 168

4 A Few New Coabsorbent Cycle Configurations: The Internal
Composition and the Coabsorbent Cycle Truncation 171
4.1 Balance (Fractal) Truncation of the Coabsorbent Cycle 175
 4.1.1 Cooling Cycle .. 176
 4.1.2 Heating Cycle .. 178
 4.1.3 Truncation Theory .. 179
 4.1.4 Truncation Columns, Common-Column Cycles,
 Column Cycles, Reverse Truncated Cycles and Fractals
 Symbolic Representation 187
 4.2 Model of Cooling and Heating Truncated Cycles 192
 4.2.1 Gax Use in “Acr” Provided Truncated Coabsorbent Cycles . 195
 4.2.2 Model Results of Cooling Truncated Coabsorbent Cycles .220
 4.2.3 Model Results of Heating Truncated Coabsorbent Cycles .227
 4.2.4 Auxiliary Mechanical Work Consumption in Truncated
 Cycles .. 232
 4.3 Hybrid Truncation of the Coabsorbent Cycle 234
 4.3.1 Hybrid Simple Truncated Cooling Cycles 238
 4.3.2 Hybrid Simple Truncated Heating Cycles 240
References .. 247
5 Effectiveness of Coabsorbent Cycles and Cascades According to First and Second Principles of Thermodynamics

5.1 Cooling Fractal (Nontruncated Cycle) COP
5.2 Heating Fractal (Nontruncated Cycle) COP
5.3 Truncated Cooling Fractal COP
5.4 Truncated Heating Fractal COP
5.5 Hybrid Cooling Fractal COP
5.6 Hybrid Heating Fractal COP
5.7 COP of Hybrid Cooling and Heating Fractals Cascades
 5.7.1 Deep Cooling Cascade Study Case
 5.7.2 Cold Region Heating Cascade Study Case

References

6 External Coabsorbent Cycle Composition

6.1 The Pressure-Stages Multi-Effect Coabsorbent Cooling Cycle (PSMECCC) Thermal Analysis
 6.1.1 Basic Lemma of the Pressure-Stages Multi-Effect Coabsorbent Cooling Cycle (PSMECCC) Computation
 6.1.2 Carnot COP Theorem of the Pressure-Stages Multi-Effect Coabsorbent Cooling Cycle (PSMECCC)
6.2 Use Analysis of Water–Lithium Bromide Pressure-Stages Multi-Effect Coabsorbent Cycle (PSMECCC) in Air Conditioning
 6.2.1 Structure and Heat Exchange Analysis of PSMECCC
 6.2.2 PSMECCC-Classic Air Conditioning System Link
 6.2.3 PSMECCC (Heat Source) Energy Savings in Air Conditioning

References

7 Coabsorbent Cycles Exergy Evaluation

7.1 Simple Algorithm of the Heat Pumping Supplied in Cogeneration
 7.1.1 Steam Rankine Cycle-Coabsorbent Heat Pump Link
 7.1.2 Steam Rankine Cycle-Coabsorbent Cooling Cycle Link
7.2 Exergy Efficiency Algorithm of Coabsorbent Cooling Cycles
 7.2.1 Exergy Efficiency Results of Coabsorbent and mvc Cooling Cycles
7.3 Exergy Efficiency Algorithm of Coabsorbent Heating Cycles
 7.3.1 Exergy Efficiency Results of Coabsorbent and Mechanical Vapor Compression Heating Cycles
7.4 Cogeneration and Trigeneration Exergy Efficiency Algorithm of Coabsorbent Cooling and Heating Cycles

References
Contents

8 A Thermodynamic Approach of Mechanical Vapor Compression Refrigeration and Heating COP Increase

8.1 Introduction .. 327

8.2 Methods of Increasing the Refrigeration Effectiveness and Their Ideal Thermodynamic Limits 329

8.2.1 TWRC Method 329

8.2.2 TTRC Method 338

8.3 Refrigeration Cycles Provided with TWRC 340

8.3.1 TWRC (SSRC, CWF) 340

8.3.2 TWRC (SSRC, CWF, CSTSGS) 342

8.3.3 TWRC (SSRC) 342

8.3.4 TWRC (TSRC, CWF, CSTSGS) 343

8.3.5 TWRC (THSRC, CWF, CSTSGS) and TWRC (MSRC, CWF, CSTSGS) .. 345

8.3.6 Air Liquefaction and Separation Cycles Provided with TWRC .. 346

8.4 Results of Refrigeration Cycles Provided with TWRC 347

8.4.1 TWRC (SSRC, CWF), TWRC (SSRC, CWF, CSTSGS) ... 349

8.4.2 TWRC (SSRC) 350

8.4.3 TWRC (TSRC, CWF, CSTSGS) 351

8.4.4 TWRC (THSRC, CWF, CSTSGS) 352

8.5 Further Results Concerning TWRC Feasibility 352

8.6 Refrigeration Cycles Provided with TTRC 360

8.7 TWRC and TTRC Heat Pumping Theory and Recent Results 361

8.7.1 TWRC and TTRC Heat Pumping Theory 361

8.7.2 TWRC and TTRC Heat Pumping Recent Results 370

References .. 381

9 A Non-equilibrium Phenomenological Two-Point Theory of Mass and Heat Transfer in Physical and Chemical Interactions

9.1 Application to NH₃–H₂O and Other Working Systems 383

9.1.1 A Non-equilibrium Phenomenological Approach of the Coupled Mass and Heat Transfer in Physical Mono-, Bi- and Particular Polycomponent Gas–Liquid Interactions ... 385

9.1.2 A Non-equilibrium Phenomenological Approach of the Coupled Mass and Heat Transfer in Chemical Interactions . . . 393

9.3 Non-equilibrium (Natural) and Equilibrium (Ideal) Thermodynamical Forces ... 405

9.4 Modeling of the NH₃–H₂O Bubble Absorption, Analytical Study of Absorption and Experiments 409
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1</td>
<td>Model of the Bubble Absorption Applying the PhHGDT Tool</td>
<td>409</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Analytical Study of NH$_3$–H$_2$O Absorption</td>
<td>419</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Experimental</td>
<td>422</td>
</tr>
<tr>
<td>9.5</td>
<td>A Non-equilibrium Phenomenological (Two-Point) Theory of Mass and Heat Transfer: Forces, System-Source Interactions and Thermodynamic Cycle Applications</td>
<td>422</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Natural Forces of the Coupled and Non-coupled Mass and Heat Transfer</td>
<td>424</td>
</tr>
<tr>
<td>9.5.2</td>
<td>System-Source Interactions</td>
<td>432</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Phenomenological Coefficients of Mixed Transfer and the Theorem Concerning the Maximization Thereof</td>
<td>437</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Application of TPT to the Thermodynamic Cycles</td>
<td>441</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>453</td>
</tr>
<tr>
<td>10</td>
<td>A New Wording of the Laplace Equation: Variational Numerical and Analytical Approach of the Liquid Capillary Rise Effect</td>
<td>457</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>457</td>
</tr>
<tr>
<td>10.2</td>
<td>A New Wording of the Laplace Equation</td>
<td>457</td>
</tr>
<tr>
<td>10.3</td>
<td>Variational Numerical Approach</td>
<td>460</td>
</tr>
<tr>
<td>10.4</td>
<td>Analytical Approach</td>
<td>463</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>469</td>
</tr>
<tr>
<td>11.2</td>
<td>True Marangoni Effect Mechanism</td>
<td>469</td>
</tr>
<tr>
<td>11.3</td>
<td>Pseudo-Marangoni Ammonia–Water Cell Modeling</td>
<td>474</td>
</tr>
<tr>
<td>11.4</td>
<td>Pseudo-Marangoni Ammonia–Water Cell Modeling Results</td>
<td>478</td>
</tr>
<tr>
<td>11.5</td>
<td>Pseudo-Marangoni Water–Lithiumbromide Cell Modeling and Modeling Results</td>
<td>484</td>
</tr>
<tr>
<td>11.5.1</td>
<td>TPT Application to the Water–Lithiumbromide Case</td>
<td>484</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Pseudo-Marangoni Water–Lithiumbromide Cell Modeling</td>
<td>487</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Pseudo-Marangoni Water–Lithiumbromide Cell Modeling Results</td>
<td>489</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Introduction</td>
<td>493</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Marangoni-Gravity Forces Dimensionless Criterion</td>
<td>494</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Proposed Mass and Heat Exchanger</td>
<td>495</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Mass and Heat Exchange Model</td>
<td>496</td>
</tr>
<tr>
<td>11.6.5</td>
<td>Model Results</td>
<td>497</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>499</td>
</tr>
</tbody>
</table>
Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies
Staicovici, M.-D.
2014, XXVI, 501 p. 268 illus., 84 illus. in color., Hardcover
ISBN: 978-3-642-54683-9